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Preface

These lecture notes were prepared for the course, taught by the author at the
Faculty of Mathematics and CS of the Weizmann Institute of Science. The course
is intended as the first encounter with stochastic calculus with a nice engineering
application: estimation of signals from the noisy data. Consequently the rigor
and generality of the presented theory is often traded for intuition and motivation,
leaving out many interesting and important developments, either recent or classic.
Any suggestions, remarks, bug reports etc. are very welcome and can be sent to
pavel.chigansky@weizmann.ac.il.

Pavel Chigansky
WIS, February 2005
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Instead of Introduction

An example

Consider a simple random walk on integers (e.g. randomly moving particle)

Xj = Xj−1 + εj , j ∈ Z+ (1)

starting from the origin, where εj is a sequence of independent random signs P(εj =
±1) = 1/2, j ≥ 1. Suppose the position of the particle at time j is to be estimated
(guessed or filtered) on the basis of the noisy observations

Yi = Xi + ξi, i = 1, ..., j (2)

where ξj is a sequence of independent identically distributed (i.i.d.) random vari-
ables (so called discrete time white noise) with Gaussian distribution, i.e.

P
(
ξj ∈ [a, b]

)
=

1√
2π

∫ b

a

e−u2/2du, ∀j ≥ 1.

Formally an estimate is a rule, which assigns a real number1to any outcome of
the observation vector Y[1,j] = {Y1, ..., Yj}, in other words it is a map φj(y) : Rj 7→
R. How different guesses are compared ? One possible way is to require minimal
square error on average, i.e. φj is considered better than ψj if

E
(
Xj − φj(Y[1,j])

)2 ≤ E
(
Xj − ψj(Y[1,j])

)2
, (3)

where E(·) denotes expectation, i.e. average with respect to all possible outcomes
of the experiment, e.g. for j = 1

E
(
X1−φ1(Y1)

)2
=

1

2

∫ ∞

−∞

((
1−φ1(1+u)

)2
+
(
−1−φ1(−1+u)

)2) 1√
2π
e−u2/2du.

Note that even if (3) holds,(
Xj − φj(Y[1,j])

)2
>
(
Xj − ψj(Y[1,j])

)2
may happen in an individual experiment. However this is not expected2to happen.

Once the criteria (3) is accepted, we would like to find the best (optimal)
estimate. Let’s start with the simplest guess

X̃j := φ̃j(Y[1,j]) ≡ Yj .

The corresponding mean square error is

P̃j = E(Xj − Yj)
2 = E(Xj −Xj − ξj)

2 = Eξ2j = 1.

1Though Xj takes only integer values, we allow a guess to take real values, i.e. ”soft” decisions

are admissible
2think of an unfair coin with probability of heads equal to 0.99: it is not expected to give

tails, though it may!
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8 INSTEAD OF INTRODUCTION

This simple estimate does not take into account past observations and hence po-
tentially can be improved by using more data. Let’s try˜̃

Xj =
Yj + Yj−1

2
.

The corresponding mean square error is

˜̃
P j =E

(
Xj −

˜̃
Xj

)2

= E

(
Xj −

Yj + Yj−1

2

)2

=

E

(
Xj −

Xj +Xj−1 + ξj−1 + ξj
2

)2

=

E
(
(Xj −Xj−1)/2− (ξj−1 + ξj)/2

)2
=

E
(
εj/2− (ξj−1 + ξj)/2

)2
= 1/4 + 1/2 = 0.75

which is an improvement by 25% ! Let’s try to increase the ”memory” of the
estimate:

E

(
Xj −

Yj + Yj−1 + Yj−2

3

)2

= ... =

E

(
2

3
εj +

1

3
εj−1 +

ξj + ξj−1 + ξj−2

3

)2

=
4

9
+

1

9
+

3

9
≈ 0.89

i.e. the error increased! The reason is that the estimate gives the ”old” and the
”new” measurements the same weights - it is reasonable to rely more on the latest
samples. So what is the optimal way to weigh the data ?

It turns out that the optimal estimate can be generated very efficiently by the
difference equation (j ≥ 1)

X̂j = X̂j−1 + Pj

(
Yj − X̂j−1

)
, X̂0 = 0 (4)

where Pj is a sequence of numbers, generated by

Pj =
Pj−1 + 1

Pj−1 + 2
, P0 = 0. (5)

Let’s us calculate the mean square error. The sequence ∆j := Xj − X̂j satisfies

∆j = ∆j−1 + εj − Pj

(
∆j−1 + εj + ξj

)
=
(
1− Pj

)
∆j−1 + (1− Pj)εj − Pjξj

and thus P̂j = E∆2
j satisfies

P̂j =
(
1− Pj

)2
P̂j−1 + (1− Pj)

2 + P 2
j , P̂0 = 0

where the independence of εj , ξj and ∆j−1 has been used. Note that the sequence
Pj satisfies the identity (just expand the right hand side using (5))

Pj =
(
1− Pj

)2
Pj−1 + (1− Pj)

2 + P 2
j , P̂0 = 0.

So the difference P̂j − Pj obeys the linear time varying equation(
P̂j − Pj

)
=
(
1− Pj

)2(
P̂j−1 − Pj−1

)
, t ≥ 1

and since P̂0 − P0 = 0, it follows that P̂j ≡ Pj for all j ≥ 0, or in other words Pj is

the mean square error, corresponding to X̂j ! Numerically we get
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j 1 2 3 4 5
Pj 0.5 0.6 0.6154 0.6176 0.618

In particular Pj converges to the limit P∞, which is the unique positive root of the
equation

P =
P + 1

P + 2
=⇒ P∞ =

√
5/2− 1/2 ≈ 0.618.

This is nearly a 40% improvement over the accuracy of X̃j ! As was mentioned
before, no further improvement is possible among linear estimates.

What about nonlinear estimates? Consider the simplest nonlinear estimate of
X1 from Y1: guess 1 if Y1 ≥ 0 and −1 if Y1 < 0, i.e.

X̌1 = sign(Y1).

The corresponding error is

P̌1 = E
(
X1 − X̌1

)2
=

1

2
E
(
1− sign(1 + ξ1)

)2
+

1

2
E
(
− 1− sign(−1 + ξ1)

)2
=

1

2
22P(ξ1 ≤ −1) +

1

2
22P(ξ1 ≥ 1) = 4P(ξ1 ≥ 1) = 4

1√
2π

∫ ∞

1

e−u2/2du ≈ 0.6346

which is even worse than the linear estimate X̂1! Let’s try the estimate

X̄1 = tanh(Y1),

which can be regarded as a ”soft” sign. The corresponding mean square error is

P̄1 = E
(
X1 − X̄1

)2
=

1

2

∫ ∞

∞

[(
1− tanh(u+ 1)

)2
+
(
1 + tanh(u− 1)

)2] 1√
2π

exp{−u2/2}du ≈ 0.4496

which is the best estimate up to now (in fact it is the best possible!).
How can we compute the best nonlinear estimate of Xj efficiently (meaning

recursively)? Let ρj(i), i ∈ Z, j ≥ 0 be generated by the nonlinear recursion

ρj(i) = exp{Yji− i2/2}
(
ρj−1(i− 1) + ρj−1(i+ 1)

)
, j ≥ 1 (6)

subject to ρ0(0) = 1 and ρ0(i) = 0, i ̸= 0. Then the best estimate of Xj from the
observations {Y1, ..., Yj} is given by

X̄j =

∑∞
i=−∞ iρj(i)∑∞
i=−∞ ρj(i)

. (7)

How good is it ? The exact answer is hard to calculate. E.g. the empirical mean
square error P̄100 is around 0.54 (note that it should be less than 0.618 and greater
than 0.4496).

How the same problem could be formulated in continuous time, i.e. when the
time parameter (denoted in this case by t) can be any nonnegative real number
? The signal defined in (1) is a Markov3chain with integer values, starting from
zero and making equiprobable transitions to the nearest neighbors. Intuitively the

3Recall that a sequence called Markov if the conditional distribution ofXj , given the ”history”
{X0, ..., Xj−1}, depends only on the last entry Xj−1 and not on the whole path. Verify this

property for the sequence defined by (1).
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analogous Markov chain in continuous time should satisfy

P
(
Xt+ε = i|Xs, 0 ≤ s ≤ t

)
=


1− 2ε, i = Xt

ε i = Xt ± 1

0 otherwise

(8)

for sufficiently small ε > 0. In other words, the process is not expected to jump on
short time intervals and eventually jumps to one of the nearest neighbors. It turns
out that (8) uniquely defines a stochastic process. For example it can be modelled
by a pair of independent Poisson processes. Let (τn)n∈Z+ be an i.i.d sequence of
positive random variables with standard exponential distribution

P
(
τn ≤ t

)
=

{
1− e−t, t ≥ 0

0, t < 0
(9)

Then a standard Poisson process is defined as 4

Πt = max{n :
n∑

ℓ=1

τℓ ≤ t},

Clearly Πt starts at zero (Π0 = 0) and increases, jumping to the next integer at
random times separated by τℓ’s. Let Π

−
t and Π+

t be a pair of independent Poisson
process. Then the process

Xt = Π+
t −Π−

t , t ≥ 0

satisfies (8). Remarkably the exponential distribution is the only one which can
lead to a Markov process.

To define an analogue of Yt, the concept of ”white noise” is to be introduced
in continuous time. The origin of the term ”white noise” stems from the fact that
the spectral density of an i.i.d. sequence ξ is flat, i.e.

Sξ(λ) :=

∞∑
j=−∞

Eξ0ξje
−iλj =

∞∑
j=−∞

δ(j)e−iλj = 1 ∀λ ∈ (−π, π].

So any random sequence with flat spectral density is called (discrete time) white
noise and its variance is recovered by integration over the spectral density

Eξ2t =
1

2π

∫ π

−π

1dλ = 1.

The same definition leads to a paradox in continuous time: suppose that a stochastic
process have flat spectral density, then it should have infinite variance5

Eξ2t =
1

2π

∫ ∞

−∞
dλ = ∞.

This paradox is resolved if the observation process is defined as

Yt =

∫ t

0

Xsds+Wt, (10)

4with convention
∑0

ℓ=1 = 0.
5recall that the spectral density for continuous time processes is supported on the whole real

line, rather than being condensed to (−π, π] as in the case of sequences.
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where W = (Wt)t≥0 is the Wiener process or mathematical Brownian motion. The
Wiener process is characterized by the following properties: W0 = 0, the trajectories
of Wt are continuous functions and it has independent increments with

E
(
Wt|Wu, u ≤ s

)
=Ws, E

(
(Wt −Ws)

2|Wu, u ≤ s
)
= t− s.

Why is the model (10) compatible with the ”white noise” notion? Introduce the
process

ν∆t =
Wt −Wt−∆

∆
, ∆ > 0

Then Eν∆t = 0 and6

Eν∆t ν
∆
s =

1

∆2
E
(
Wt −Wt−∆

)(
Ws −Ws−∆

)
=

1

∆2

{
∆− |t− s|, |t− s| ≤ ∆

0, |t− s| ≥ ∆
.

So the process ν∆t is stationary with the correlation function

R∆
ν (τ) =

1

∆2

{
∆− |τ |, |τ | ≤ ∆

0, |τ | ≥ ∆
.

For small ∆ > 0, R∆
ν (τ) approximates the Dirac δ(τ) in the sense that for any

continuous and compactly supported test function φ(τ)∫ ∞

−∞
φ(τ)R∆

ν (τ)dτ
∆→0−−−→ φ(0)

and if the limit process ν := lim∆→0 ν
∆
t existed, it would have flat spectral density

as required. Then the observation process (10) would contain the same information
as

Ẏt = Xt + νt,

with νt being the derived white noise. Of course, this is only an intuition and νt
does not exists as a limit in any reasonable sense (e.g. its variance at any point
t grows to infinity with ∆ → 0, which is the other side of the ”flat spectrum”
paradox). It turns out that the axiomatic definition of the Wiener process leads to
very unusual properties of its trajectories. For example, almost all trajectories of
Wt, though continuous, are not differentiable at any point.

After a proper formulation of the problem is found, what would be the analogs
of the filtering equations (4)-(5) and (6)-(7)? Intuitively, instead of the difference
equations in discrete time, we should obtain differential equations in continuous
time, e.g.

˙̂
Xt = Pt

(
Ẏt − X̂t

)
, X̂0 = 0.

However the right hand side of this equation involves derivative of Yt and hence also
ofWt, which is impossible in view of aforementioned irregularity of the latter. Then
instead of differential equations we may write (and implement!) the corresponding
integral equation

X̂t =

∫ t

0

PsdYs −
∫ t

0

PsX̂sds,

6Note that EWtWs = min(t, s) := t ∧ s for all t, s ≥ 0.
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where the first integral may be interpreted as Stieltjes integral with respect to Yt
or alternatively defined (in the spirit of integration by parts formula) as∫ t

0

PsdYs := YtPt −
∫ t

0

YsṖsds.

Such a definition is correct, since the integrand function is deterministic and differ-
entiable (Yt turns to be Riemann integrable as well). Of course, we should define
precisely what is the solution of such equation and under what assumptions it exists
and is unique. The optimal linear filtering equations then can be derived:

X̂t =

∫ t

0

Ps

(
dYs − X̂sds

)
Ṗt = 2− P 2

t , P0 = 0.

(11)

Now what about the nonlinear filter? The equations should realize a nonlinear
map of the data and thus their right hand side would require integration of some
stochastic process with respect to Yt. This is where the classical integration theory
completely fails! The reason is again irregularity of the Wiener process - it has
unbounded variation! Thus the construction similar to Stieltjes integral would not
lead to a well defined limit in general. The foundations of the integration theory
with respect to the Wiener process were laid by K.Itô in 40’s. The main idea is
to use Stieltjes like construction for a specific class of integrands (non-anticipating
processes). In terms of Itô integral the nonlinear filtering formulae are7

ρt(i) = δ(i) +

∫ t

0

(
ρs(i+ 1) + ρs(i− 1)− 2ρs(i)

)
ds+

∫ t

0

iρs(i)dYs (12)

and

X̄t =

∑∞
m=−∞mρt(m)∑∞

ℓ=−∞ ρt(ℓ)
.

This example is the particular case of the filtering problem, which is the main
subject of these lectures:

Given a pair of random process (Xt, Yt)t≥0 with known statistical
description, find a recursive realization for the optimal in the mean
square sense estimate of the signal Xt on the basis of the observed
trajectory {Ys, s ≤ t} for each t ≥ 0.

The brief history of the problem

The estimation problem of signals from the noisy observations dates back to
Gauss (the beginning of XIX century), who studied the motion of planets on the
basis of celestial observations by means of his least squares method. In the modern
probabilistic framework the filtering type problems were addresses independently
by N.Wiener (documented in the monograph [26]) and A.Kolmogorov ([20]). Both
treated linear estimation of stationary processes via the spectral representation.
Wiener’s work seems to be partially motivated by the radar tracking problems and
gunfire control. This part of the filtering theory won’t be covered in this course
and the reader is referred to the classical text [28] for further exploration.

7From now on δ(i) denotes the Kronecker symbol, i.e. δ(i) =

{
1 i = 0

0 i ̸= 0
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The Wiener-Kolmogorov theory in many cases had serious practical limitation
- all the processes involved are assumed to be stationary. R.Kalman and R.Bucy
(1960-61) [13], [14] addressed the same problem from a different perspective: us-
ing state space representation they relaxed the stationarity requirement and ob-
tained closed form recursive formulae realizing the best estimator. The celebrated
Kalman-Bucy filter today plays a central role in various engineering applications
(communications, signal processing, automatic control, etc.) Besides being of signif-
icant practical importance, the Kalman-Bucy approach stimulated much research
in the theory of stochastic processes and their applications in control and esti-
mation. The state space approach allowed nonlinear extensions of the filtering
problem. The milestone contributions in this field are due to H.Kushner [29], R.
Stratonovich [37] and Fujisaki, Kallianpur and Kunita [10] (the dynamic equations
for conditional probability distribution), Kallianpur and Striebel [17] (Bayes for-
mula for white noise observations), M. Zakai [41] (reference measure approach to
nonlinear filtering).

There are several excellent books and monographs on the subject including
R.Lipster and A.Shiryaev [21] (the main reference for the course), G.Kallianpur
[15], S.Mitter [23], G. Kallianpur and R.L. Karandikar [16] (a different look at the
problem), R.E. Elliott, L. Aggoun and J.B. Moore [8]. Classic introductory level
texts are B.Anderson and J. Moore [1] and A. Jazwinski [12].





CHAPTER 1

Probability preliminaries

Probability theory is simply a branch of measure theory, with its
own special emphasis and field of application (J.Doob).

This chapter gives a summary of the probabilistic notions used in the course, which
are assumed to be familiar (the book [34] is the main reference hereafter).

1. Probability spaces

The basic object of probability theory is the probability space (Ω,F,P), where
Ω is a collection of elementary events ω ∈ Ω (points), F is an appropriate family
of all considered events (or sets) and P is the probability measure on F. While Ω
can be quite arbitrary, F and P are required to satisfy certain properties to provide
sufficient applicability of the derived theory. The mainstream of the probability
research relies on the axioms, introduced by A.Kolmogorov in 30’s (documented in
[19]). F is required to be a σ-algebra of events, i.e. to be closed under countable
intersections and compliment operations1

Ω ∈ F

A ∈ F =⇒ Ω/A ∈ F

An ∈ F =⇒ ∩∞
n=1An ∈ F

P is a σ-additive nonnegative measure on F normalized to one, in other words P
is a set function F 7→ [0, 1], satisfying

P

( ∞⊎
n=1

An

)
=

∞∑
n=1

P(An), An ∈ F σ-additivity

P(Ω) = 1 normalization.

Here are some examples of probability spaces:

1.1. A finite probability space. For example

Ω := {1, 2, 3}
F := {∅, 1, 2, 3, 1 ∪ 2, 1 ∪ 3, 2 ∪ 3,Ω}

P(A) =
∑
ωℓ∈A

1/3, ∀A ∈ F

Note that the σ-algebra F coincides with the (finite) algebra, generated by the
points of Ω and P is defined on F by specifying its values for each ω ∈ Ω, i.e.
P(1) = P(2) = P(3) = 1/3.

1These imply that F is also closed under countable unions as well, i.e. An ∈ F =⇒
∪∞
n=1An ∈ F.

15



16 1. PROBABILITY PRELIMINARIES

Example 1.1. Tossing a coin n times. The elementary event ω is a string of
n zero-one bits, i.e. the sampling space Ω consists of 2n points. F consists of all
subsets of Ω (how many are there?). The probability measure is defined (on F) by
setting P(ω) = 2−n, for all ω ∈ Ω. What is the probability of the event A =”the
first bit of a string is one”?

P(A) = P
(
ω : ω(1) = 1

)
=

∑
ℓ:ωℓ(1)=1

2−n = 1/2 (by symmetry).

�

1.2. The Lebesgue probability space ([0, 1],B, λ). Here B denotes the
Borel σ-algebra on [0, 1], i.e. the minimal σ-algebra containing all open sets from
[0, 1]. It can be generated by the algebra of all intervals. The probability measure
λ is uniquely defined (by Caratheodory extension theorem) on B by its restriction
e.g. to the algebra of semi-open intervals

λ((a, b]) = b− a, b ≥ a.

Similarly a probability space is defined on R (or Rd). The probability measure in
this case can be defined by any nondecreasing right continuous (why?) nonnegative
function F : R 7→ [0, 1], satisfying limx→∞ F (x) = 1 and limx→−∞ F (x) = 0:

P
(
(a, b]

)
= F (b)− F (a).

What is the analogous construction in Rd ?

Example 1.2. An infinite series of coin tosses. The elementary event is an
infinite binary sequence or equivalently 2 a point in [0, 1], i.e. Ω = [0, 1]. For the
event A from the previous example:

λ(A) = λ
(
ω : ω(1) = 1

)
= λ

(
ω ≥ 1/2

)
= 1/2.

�

1.3. The space of infinite sequences. (R∞,B(R∞),P). The Borel σ-algebra
B(R∞) can be generated by the cylindrical sets of the form

A = {x ∈ R∞ : xi1 ∈ (a1, b1], ..., xin ∈ (an, bn]}, bi ≥ ai

The probability P is uniquely defined onB(R∞) by a consistent family of probability
measures Pn on

(
Rn,B(Rn)

)
, n ≥ 1 (Kolmogorov theorem), i.e. if Pn satisfies

Pn+1(B × R) = Pn(B), B ∈ B(Rn).

Example 1.3. Let p(x, y) be a measurable3 R×R 7→ R+ nonnegative function,
such that ∫

R
p(x, y)dy = 1, a.s.∀x

and let ν(x) be a probability density (i.e. ν(x) ≥ 0 and
∫
R ν(x)dx = 1). Define a

family of probability measures on B(Rn+1) by the formula:

Pn+1
(
A0 × ...×An

)
=

∫
A0

...

∫
An

ν(x1)p(x1, x2)...p(xn−1, xn)dx1...dxn.

2some sequences represent the same numbers (e.g. 0.10000... and 0.011111...), but there are

countably many of them, which can be neglected while calculating the probabilities.
3measurability with respect to the Borel field is mean by default
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This family is consistent:

Pn+1
(
A0 × ...× R

)
=

∫
A0

...

∫
R
ν(x1)p(x1, x2)...p(xn−1, xn)dx1...dxn =∫

A0

...

∫
R
ν(x1)p(x1, x2)...p(xn−2, xn−1)dx1...dxn−1 := Pn

(
A1 × ...×An−1

)
,

and hence there is a unique probability measure P (on B(R∞)), such that

P(A) = Pn(An) ∀An ∈ B(Rn), n = 1, 2, ...

The constructed measure is called Markov. �

2. Random variables and random processes

A random variable is a measurable function on a probability space (Ω,F,P) to
a metric space (say R hereon), i.e a map X(ω) : Ω 7→ R, such that

{ω : X(ω) ∈ B} ∈ F, ∀B ∈ B(R).

Due to measurability requirement X (the argument ω is traditionally omitted)
induces a measure on B(R):

PX(B) := P
(
ω : X(ω) ∈ B

)
, ∀B ∈ B(R).

The function FX : R 7→ [0, 1]

FX(x) = PX

(
(−∞, x]

)
= P (X ≤ x), x ∈ R

is called the distribution function of X. Note that by definition FX(x) is a right-
continuous function.

A stochastic (random) process is a collection of random variables Xn(ω) on a
probability space (Ω,F,P), parameterized by time n ∈ Z+. Equivalently, a sto-
chastic process can be regarded as a probability measure (or probability distribu-
tion) on the space of real valued sequences. The finite dimensional distributions
Fn
X : Rn 7→ [0, 1] of X are defined as

Fn
X(x1, ..., xn) = P

(
X1 ≤ x1, ..., Xn ≤ xn

)
, n ≥ 1

The existence of a random process with given finite dimensional distributions is
guaranteed by the Kolmogorov theorem if and only if the family of probability
measures on Rn, corresponding to Fn

X , is consistent. Then one may realize X as a
coordinate process on an appropriate probability space, in which case the process
is called canonical.

3. Expectation and its properties

The expectation of a real random variable X ≥ 0, defined on (Ω,F,P), is the
Lebesgue integral of X with respect to the measure P, i.e. the limit (either finite
of infinite)

EX =

∫
Ω

X(ω)P(dω) := lim
n→∞

EXn,

where Xn is an approximation of X by simple (”piecewise constant”) functions,
e.g.

Xn(ω) =
n2n∑
ℓ=1

ℓ− 1

2n
1

{
ℓ− 1

2n
≤ X(ω) <

ℓ

2n

}
+ n1

(
X(ω) ≥ n

)
(1.1)
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for which

EXn :=
n2n∑
ℓ=1

ℓ− 1

2n
P

{
ℓ− 1

2n
≤ X(ω) <

ℓ

2n

}
+ nP

(
X(ω) ≥ n

)
is defined. Such limit always exists and is independent of the specific choice of the
approximating sequence. For a general random variable, taking values with both
signs, the expectation is defined4

EX = E(0 ∧X)− E(0 ∨X) := EX+ + EX−

if at least one of the terms is finite. If EX exists and is finite X is said to be
Lebesgue integrable with respect to P. Note that expectation can be also realized
on the induced probability space, e.g.

EX =

∫
Ω

X(ω)P(dω) =

∫
R
xPX(dx) =

∫ ∞

−∞
xdFX(x).

(the latter stands for the Lebesgue-Stieltjes integral).

Example 1.4. Consider a random variable X(ω) = ω2 on the Lebesgue prob-
ability space. Then

EX =

∫
[0,1]

ω2λ(dω) = 1/3

Another way to calculate EX is to find its distribution function:

FX(x) = P(X(ω) ≤ x) = P(ω2 ≤ x) = P(ω ≤
√
x) =


0 x < 0
√
x 0 ≤ x < 1

1 1 ≤ x

and then to calculate the integral

EX =

∫ ∞

−∞
xdFX(x) =

∫
[0,1]

xd(
√
x) = 1−

∫
[0,1]

√
xdx = 1/3.

�
The expectation have the following basic properties:

(A) if EX is well defined, then EcX = cEX for any c ∈ R
(B) if X ≤ Y P-a.s., then EX ≤ EY
(C) if EX is well defined, then EX ≤ E|X|
(D) if EX is well defined, then EX1A is well defined for all A ∈ F. If EX is

finite, so is EX1A

(E) if E|X| <∞ and E|Y | <∞, then E(X + Y ) = EX + EY
(F) if X = 0 P-a.s., then EX = 0
(G) if X = Y P-a.s. and E|X| <∞, E|Y | <∞, then EX = EY
(H) if X ≥ 0 and EX = 0, then X = 0 P-a.s.

The random variables {X1, ..., Xn} are independent if for any subset of indices
{i1, ..., im} ⊆ {1, ..., n} and Borel sets A1, ..., Am,

P
(
Xi1 ∈ A1, ..., Xim ∈ Am

)
= P

(
Xi1 ∈ A1

)
...P
(
Xim ∈ Am

)
.

For example X and Y are independent if

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (X ∈ B)

4a ∧ b = amin b and a ∨ b = amax b
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for any Borel sets A and B. Note that pairwise independence is not enough in gen-
eral for independence of e.g. three random variable. Also note that independence
is the joint property of random variables and the measure P. Being dependent
under P, the same random variables may be independent under another measure

P̃ (defined on the same probability space).
The characteristic function of X is the Fourier transform of its distribution, i.e.

φX(λ) := E exp
(
iλX

)
, λ ∈ R.

The independence can be alternatively formulated via distribution or characteristic
functions (How?).

4. Convergence of random variables

A sequence of random variables Xn converges to a random variable X

(1) P-almost surely, if P
(
limn→∞Xn = X

)
= 1.

(2) in probability P if limn→∞ P
(
|Xn −X| ≥ ε

)
= 0, ∀ε > 0.

(3) in Lp(Ω,F,P), p ≥ 1 if limn→∞ E
∣∣Xn −X

∣∣p = 0 and E|X|p <∞.
(4) weakly or in law, if for any bounded and continuous function f

lim
n→∞

Ef(Xn) = Ef(X).

Other types of convergence are possible, but these are used mostly. Note that the
convergence in law is actually not a convergence of the random variables, but rather
of their distributions: for example, an i.i.d. random sequence converges in law and
does not converge in any other aforementioned sense.

The following implications can be easily verified

P−a.s.−−−−→
Lp

−→

}
=⇒ P−→ =⇒ w−→

while the other are wrong in general.

Example 1.5. Let Xn be an sequence of independent random variables with

P(Xn = 1) = 1/n, P(Xn = 0) = 1− 1/n.

Then Xn converges in probability: for 0 < ε < 1

P
(
Xn ≥ ε

)
= P

(
Xn = 1

)
= 1− 1/n→ 0.

However it doesn’t converge P-a.s. Let An = {Xn = 1} and let

Ai.o =
∩
n≥0

∪
m≥n

Am

i.e. the event of Xn being equal to 1 infinitely often. Let us show that P (Ai.o.) = 1
or alternatively5 P (Ac

i.o.) = 0:

P (Ac
i.o.) = P

( ∪
n≥0

∩
m≥n

Ac
m

)
≤
∑
n

P
( ∩
m≥n

Ac
m

)
.

5the superscript c stands for compliment, i.e. Ac = Ω\A.
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For any fixed n and ℓ ≥ 1, due to independence

P
( n+ℓ∩
m=n

Ac
m

)
=

n+ℓ∏
m=n

P
(
Ac

m

)
=

n+ℓ∏
m=n

(1− 1/m) = exp

{
n+ℓ∑
m=n

log(1− 1/m)

}
≤

exp

{
−

n+ℓ∑
m=n

1/m

}
ℓ→∞−−−→ 0,

so, by continuity of P (which is implied by σ-additivity!),

P
( ∞∩
m=n

Ac
m

)
= 0

for any n and thus P(Ai.o) = 1, meaning that Xn does not converge to zero P-a.s.
Is the independence crucial? Yes ! For example take dependent (why?) random
variables on the Lebesgue space, Xn = 1(ω ≤ 1/n). Then the set {ω : Xn(ω) ̸→ 0}
is just the singleton {0}, whose probability is zero and so P(Xn → 0) = 1! �

This example is the particular case of the Borel-Cantelli lemmas:
∞∑

n=1

P(An) <∞ =⇒ P(Ai.o) = 0

and ∑∞
n=1 P(An) = ∞

An are independent

}
=⇒ P(Ai.o.) = 1.

5. Conditional expectation

The conditional expectation of a random variable X ≥ 0 with respect to a σ-
algebra G (under measure P) is a random variable, denoted by E(X|G)(ω), which
satisfies the properties:

(1) E(X|G)(ω) is G-measurable
(2) E

(
X − E(X|G)

)
1A = 0 for all A ∈ G.

The conditional expectation is characterized by these properties up to almost sure
equivalence.

Example 1.6. Suppose G is generated by a finite partition G of Ω, i.e.

G = {G1, ..., Gn}, Gi ∩Gj = ∅,
n⊎

j=1

Gj = Ω.

Then (why?)

E(X|G) =
n∑

ℓ=1

EX1Gℓ
(ω)

P(Gℓ)
1Gℓ

(ω),

where 0/0 = 0 is understood. �
For a general random variable X, E(X|G) = E(X+|G) + E(X−|G) if no uncer-

tainty of the type ”∞−∞” arises.
The inverse images {ω : Y ∈ B}, B ∈ B(R) of a random variable Y form a

σ-algebra GY ⊆ F. The conditional expectation E(X|GY ) is usually denoted by
E(X|Y ) and there always exists6 a Borel function ψ, such that E(X|Y ) = ψ(Y ).

6if the space is not too wild, e.g. Polish spaces are OK
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The conditional expectation enjoys the same properties as the expectation and
in addition

(A′) if G1 ⊆ G2, then E
(
E
(
X|G2

)∣∣G1

)
= E(X|G1) P-a.s.

(B′) if E|X|2 <∞, then for any Borel function g

E
(
X − E(X|Y )

)2 ≤ E
(
X − g(Y )

)2
. (1.2)

The latter property can be interpreted as optimality in the mean square sense of
the conditional expectation among all estimates of X given the realization of Y
(cf. (7) from the previous chapter). The main tool in calculation of the conditional
expectation is the Bayes formula.

Example 1.7. Let (X,Y ) be a pair of random variables and suppose that their
distribution has density (with respect to the Lebesgue measure on the plane), i.e.

P
(
X ≤ x, Y ≤ y

)
=

∫ x

−∞

∫ y

−∞
f(u, v)dudv.

Suppose that EX2 <∞, then (why?)

E(X|Y )(ω) =

∫
R xf

(
x, Y (ω)

)
dx∫

R f
(
u, Y (ω)

)
du

.

�

Later we will prove and use a more abstract version of this formula.

6. Gaussian random variables

A random variable X is Gaussian with mean EX = m and variance E(X −
EX)2 = σ2 > 0 if

FX(x) := P(X ≤ x) =

∫
(−∞,x]

1√
2πσ2

exp

{
− (u−m)2

2σ2

}
du.

The corresponding characteristic function is

φX(λ) = EeiλX = exp

{
imλ− 1

2
σ2λ2

}
.

If the latter is taken as definition (since there is a one to one correspondence between
FX and φX), then the degenerate case σ = 0 is included as well, i.e. a constant
random variable can be considered as Gaussian.

Analogously a random vector X with values in Rd is Gaussian with mean
EX = m ∈ Rd and the covariance matrix C = E(X − EX)(X − EX)∗ ≥ 0 (semi
positive definite matrix!), if

φX(λ) = E exp {iX∗λ} = exp

{
im∗λ− 1

2
λ∗Cλ

}
.

Finally a random process is Gaussian if its finite dimensional distributions are
Gaussian. Gaussian processes have a special place in probability theory and in
particular in filtering as we will see soon.
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Exercises

(1) Let An n ≥ 1 be a sequence of events and define the events Ai.o =∩
n≥1

∪
m≥nAn and Ae =

∪
n≥1

∩
m≥nAn.

(a) Explain the terms ”i.o.” (infinitely often) and ”e” (eventually) in the
notations.

(b) Is Ai.o = Ae if An is a monotonous sequence, i.e. An ⊆ An+1 or
An ⊇ An+1 for all n ≥ 1?

(c) Explain the notation Ai.o = limn→∞An and Ae = limn→∞An.
(d) Show that Ae ⊆ Ai.o.

(2) Prove the Borel-Cantelli lemmas.
(3) Using the Borel-Cantelli lemmas, show that

(a) a sequence Xn converging in probability has a subsequence converg-
ing almost surely

(b) a sequence Xn, converging exponentially7 in L2, converges P-a.s.
(c) if Xn is an i.i.d. sequence with E|X1| <∞, then Xn/n converges to

zero P-a.s.
(d) ifXn is an i.i.d. sequence with E|X1| = ∞, then limn→∞ |Xn|/n = ∞

P-a.s.
(e) show that if Xn is a standard Gaussian i.i.d. sequence, then

lim
n→∞

|Xn|/
√
2 lnn = 1, P− a.s.

(4) Give counterexamples to the following false implications:
(a) convergence in probability implies L2 convergence
(b) P-a.s. convergence implies L2 convergence
(c) L2 convergence implies P-a.s. convergence

(5) Let X be a r.v. with uniform distribution on [0, 1] and η be a r.v. given
by:

η =

{
X X ≤ 0.5
0.5 X > 0.5

Find E(X|η).
(6) Let ξ1, ξ2, ... be an i.i.d. sequence. Show that:

E(ξ1|Sn, Sn+1, ...) =
Sn

n
where Sn = ξ1 + ...+ ξn.

(7) (a) Consider an event A that does not depend on itself, i.e. A and A are
independent. Show that:

P{A} = 1 or P{A} = 0

(b) Let A be an event so that P{A} = 1 or P{A} = 0. Show that A and
any other event B are independent.

(c) Show that a r.v. ξ(ω) doesn’t depend on itself if and only if ξ(ω) ≡
const.

(8) Consider the Lebesgue probability space and define a sequence of random
variables8

Xn(ω) = ⌊2nω⌋ mod 2.

7i.e. E|Xn −X|2 ≤ Cρn for all n ≥ 1 with C ≥ 0 and ρ ∈ [0, 1)
8⌊x⌋ is the integer part of x
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Show that Xn is an i.i.d. sequence.
(9) Let Y be a nonnegative random variable with probability density:

f(y) =
1√
2π

e−y/2

√
y
, y ≥ 0

Define the conditional density of X given fixed Y :

f(x;Y ) =

√
Y√
2π
e−Y x2/2,

i.e. for any bounded function f

E
(
f(X)|Y

)
=

∫
R
f(x)f(x;Y )dx.

Does the formula E
(
E(X|Y )

)
= EX hold ? If not, explain why.

(10) Give an example of three dependent random variables, any two of which
are independent.

(11) Let X and Z be a pair of independent r.v. and E|X| < ∞. Then
E(X|Z) = EX with probability one. Does the formula

E(X|Z, Y ) = E(X|Y )

holds for an arbitrary Y ?
(12) Let X1 and X2 be two random variables such that, EX1 = 0 and EX2 =

0. Suppose we can find a linear combination Y = X1 + αX2, which is
independent of X2. Show that E(X1|X2) = −αX2.

(13) Show that the coordinate (canonical) process on the space from Example
1.3 is Markov, i.e.

E
(
f(Xn)|X0, ..., Xn−1

)
= E(f(Xn)|Xn−1), P− a.s. (1.3)

for any bounded Borel f .
(14) Let (Xn)n≥0 be a sequence of random variables and let

G≤n := σ{X0, ..., Xn} and G>n := σ{Xn, Xn+1, ...}.
Show that the Markov property (1.3) is equivalent to the property

E
(
πϕ|Xn

)
= E

(
ϕ|Xn

)
E
(
π|Xn

)
for all bounded random variables π and ϕ, G≤n and G>n measurable re-
spectively. In other words, the Markov property is equivalently stated as
”the future and the past are conditionally independent, given the present”.

(15) Let X and Y be i.i.d. random variables with finite variance and twice
differentiable probability density. Show that if X + Y and X − Y are
independent, then X and Y are Gaussian.

(16) Let X1, X2 and X3 be independent standard Gaussian random variables.
Show that

X1 +X2X3√
1 +X2

3

is a standard Gaussian random variable as well.
(17) Let {X1, X2, X3, X4} be a Gaussian vector with zero mean. Show that

EX1X2X3X4 = EX1X2EX3X4 + EX1X3EX2X4 + EX1X4EX2X3.

Recall that the moments, if exist, can be recovered from the derivatives
of the characteristic function at λ = 0.
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(18) Let f(x) be a probability density function of a Gaussian variable, i.e:

f(x) =
1√
2πσ2

e−(x−a)2/(2σ2)

Define a function:

gn(x1, ..., xn) =
[ n∏
j=1

f(xj)
][
1 +

n∏
k=1

(xk − a)f(xk)
]
, (x1, ..., xn) ∈ Rn

(a) Show that gn(x1, ..., xn) is a valid probability density function of some
random vector X = (X1, ..., Xn).

(b) Show that any subvector of X is Gaussian, while X is not Gaussian.
(19) Let f(x, y, ρ) be a two dimensional Gaussian probability density, so that

the marginal densities have zero means and unit variances and the corre-
lation coefficient is ρ =

∫
R
∫
R xyf(x, y, ρ) = ρ. Form a new density:

g(x, y) = c1f(x, y, ρ1) + c2f(x, y, ρ2)

with c1 > 0, c2 > 0, c1 + c2 = 1.
(a) Show that g(x, y) is a valid probability density of some vector {X,Y }.
(b) Show that each of the r.v. X and Y is Gaussian.
(c) Show that c1, c2 and ρ1, ρ2 can be chosen so that EXY = 0. Are X

and Y independent ?



CHAPTER 2

Linear filtering in discrete time

Consider a pair of random square integrable random variables (X,Y ) on a
probability space (Ω,F,P). Suppose that the following (second order) probabilistic
description of the pair is available,

EX, EY

cov(X) := E(X − EX)2, cov(Y ) := E(Y − EY )2,

cov(X,Y ) := E(X − EX)(Y − EY )

and it is required to find a pair of constants a′0 and a′1, such that

E
(
X − a′0 − a′1Y

)2 ≤ E
(
X − a0 − a1Y

)2
, ∀a0, a1 ∈ R.

The corresponding estimate X̂ = a′0 + a′1Y is then the optimal linear estimate of
X, given the observation (realization) of Y . Clearly

E
(
X − a0 − a1Y

)2
=E
(
X − EX − a1(Y − EY ) + EX − a1EY − a0

)2
=

cov(X)− 2a1 cov(X,Y ) + a21 cov(Y ) + (EX − a1EY − a0)
2 ≥

cov(X)− cov(X,Y )2/ cov(Y )

where cov(Y ) > 0 was assumed. The minimizers are

a′1 =
cov(X,Y )

cov(Y )
, a′0 = EX − cov(X,Y )

cov(Y )
EY.

If cov(Y ) = 0 (or in other words Y = EY , P-a.s.), then the same arguments lead
to

a′1 = 0, a′0 = EX.

So among all linear functionals of {1, Y } (or affine functionals of Y ), there is the
unique optimal one 1, given by

X̂ := EX + cov(X,Y ) cov⊕(Y )
(
Y − EY ) (2.1)

with the corresponding minimal mean square error

E(X − X̂)2 = cov(X)− cov2(X,Y ) cov⊕(Y ),

where for any x ∈ R

x⊕ =

{
x−1, x ̸= 0

0, x = 0

1Note that the pair of optimal coefficients (a′0, a
′
1) is unique, though the random variable

a′0 + a′1Y (ω) can be modified on a P-null set, without altering the mean square error. So the

uniqueness of the estimate is understood as uniqueness among the equivalence classes of random
variables (all equal with probability one within each class)

25
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Note that the optimal estimate satisfies the orthogonality property

E
(
X − X̂

)
1 = 0

E
(
X − X̂

)
Y = 0

that is the residual estimation error is orthogonal to any linear functional of the
observations. It is of course not a coincidence, since (2.1) is nothing but the orthog-
onal projection of X on the linear space spanned by the random variables 1 and
Y . These simple formulae are the basis for the optimal linear filtering equations of
Kalman-Bucy and Bucy ([13], [14]), which is the subject of this chapter.

1. The Hilbert space L2, orthogonal projection and linear estimation

Let L2(Ω,F,P) (or simply L2) denote the space of all square integrable random
variables 2. Equipped with the scalar product

⟨X,Y ⟩ := EXY, X, Y ∈ L2

and the induced norm ∥X∥ :=
√
⟨X,X⟩, L2 is a Hilbert space (i.e. infinite dimen-

sional Euclidian space). Let L be a closed linear subspace of L2 (either finite or
infinite dimensional at this point). Then

Theorem 2.1. For any X ∈ L2, there exists a unique3 random variable X̂ ∈ L,

called the orthogonal projection and denoted by Ê(X|L), such that

E
(
X − X̂

)
= inf

X̃∈L

E
(
X − X̃

)2
(2.2)

and
E
(
X − X̂

)
Z = 0 (2.3)

for any Z ∈ L.

Proof. Let d2 := infX̃∈L
E
(
X − X̃

)2
and let X̃j be the sequence in L, such

that d2j := E(X − X̃j)
2 → d2. Then X̃j is a Cauchy sequence in L2

E
(
X̃j − X̃i

)2
=2E

(
X − X̃i

)2
+ 2E

(
X − X̃j

)2 − 4E

(
X − X̃i + X̃j

2

)2

≤

2E
(
X − X̃i

)2
+ 2E

(
X − X̃j

)2 − 4d2
i,j→∞−−−−→ 0,

where the inequality holds since X̃i + X̃j ∈ L. The space L2 is complete and so X̃j

converges to a random variable X̃∞ in L2 and since L is closed, X̃∞ ∈ L. Then

∥X −X∞∥ =

√
E
(
X −X∞

)2 ≤
√
E
(
X − X̃j)2 +

√
E(X̃j −X∞

)2 j→∞−−−→ d

and so X∞ is a version of X̂. To verify (2.3), fix a t ∈ R: then for any Z ∈ L

E
(
X − X̂

)2 ≤ E
(
X − X̂ − tZ

)2
=⇒ 2tE(X − X̂)Z ≤ t2EZ2

The latter cannot hold for arbitrary small t unless E(X − X̂)Z = 0. Finally X̂ is

unique: suppose that X̂ ′ ∈ L satisfies (2.2) as well, then

E(X − X̂ ′)2 = E(X − X̂ + X̂ − X̂ ′)2 = E(X − X̂)2 + E(X̂ − X̂ ′)2

2more precisely of the equivalence classes with respect the relation P(X = Y ) = 1
3actually a unique equivalence class



1. THE HILBERT SPACE L2, ORTHOGONAL PROJECTION AND LINEAR ESTIMATION 27

which implies E(X̂ − X̂ ′)2 = 0 or X̂ = X̂ ′, P-a.s. �

The orthogonal projection satisfies the following main properties:

(a) EÊ(X|L) = EX

(b) Ê(X|L) = X if X ∈ L and Ê(X|L) = 0 if X ⊥ L

(c) linearity: for X1, X2 ∈ L2 and c1, c2 ∈ R,

Ê(c1X1 + c2X2|L) = c1Ê(X1|L) + c2Ê(X2|L)

(d) for two linear subspaces L1 ⊆ L2,

Ê(X|L1) = Ê
(
Ê(X|L2)

∣∣L1

)
Proof. (a)-(c) are obvious from the definition. (d) holds, if

E
(
X − Ê

(
Ê(X|L2)

∣∣L1

))
Z = 0

for all Z ∈ L1, which is valid since

E
(
X − Ê

(
Ê(X|L2)

∣∣L1

))
Z =

E
(
X − Ê(X|L2)

)
Z +

(
Ê(X|L2)− Ê

(
Ê(X|L2)

∣∣L1

))
Z = 0 (2.4)

where the first term vanishes since L1 ⊆ L2. �

Theorem 2.1 suggests that the optimal in the mean square sense estimate of
a random variable X ∈ L2 from the observation (realization) of the collection of
random variables Yj ∈ L2, j ∈ J ⊆ Z+ is given by the orthogonal projection of X

onto LY
J := span{Yj , j ∈ J}. While for finite J the explicit expression for Ê(X|LY

J )

is straightforward and is given in Proposition 2.2 below, calculation of Ê(X|LY
J )

in the infinite case is more involved. In this chapter the finite case is treated (still
we’ll need generality of Theorem 2.1 in continuous time case).

Proposition 2.2. Let X and Y be random vectors in Rm and Rn with square

integrable entries. Denote4 by Ê(X|LY ) the orthogonal projection5of X onto the
linear subspace, spanned by the entries of Y and 1. Then6

Ê(X|LY ) = EX + cov(X,Y ) cov(Y )⊕
(
Y − EY

)
(2.5)

and

E
(
X−Ê(X|LY )

)(
X−Ê(X|LY )

)∗
= cov(X)−cov(X,Y ) cov(Y )⊕ cov(Y,X), (2.6)

where Q⊕ stands for the generalized inverse of Q (see (2.8) below).

Proof. Let A and a be a matrix and a vector, such that Ê(X|LY ) = a+AY .
Then by Theorem 2.1 (applied componentwise!)

0 = E
(
X − a−AY

)
4sometimes the notation Ê(X|Y ) = Ê(X|LY ) is used.
5Naturally the orthogonal projection of a random vector (on some linear subspace) is a vector

of the orthogonal projections of its entries.
6the constant random variable 1 is always added to the observations, meaning that the

expectations EX and EY are known (available for the estimation procedure)
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and
0 =E

(
X − a−AY

)(
Y − EY

)∗
=

E
(
X − EX −A(Y − EY )− a+ EX −AEY

)(
Y − EY

)∗
=

cov(X,Y )−A cov(Y )

(2.7)

If cov(Y ) > 0, then (2.5) follows with cov(Y )⊕ = cov(Y )−1. If only cov(Y ) ≥ 0,
there exists a unitary matrix U (i.e. UU∗ = I) and a diagonal matrix D ≥ 0, so
that cov(Y ) = UDU∗. Define7

cov(Y )⊕ := UD⊕U∗ (2.8)

where D⊕ is a diagonal matrix with the entries

D⊕
ii =

{
1/Dii, Dii > 0

0, Dii = 0
. (2.9)

Then

cov(X,Y )− cov(X,Y ) cov(Y )⊕ cov(Y ) =

cov(X,Y )U
(
I −D⊕D

)
U∗ =

∑
ℓ:Dℓℓ=0

cov(X,Y )uℓu
∗
ℓ (2.10)

by the definition of D⊕, where uℓ is the ℓ-th column of U . Clearly

u∗ℓ cov(Y )uℓ = 0 =⇒ E
(
u∗ℓ (Y − EY )

)2
= 0 =⇒ (Y ∗ − EY ∗)uℓ = 0, P− a.s.

and so
cov(X,Y )uℓ = E(X − EX)(Y − EY )∗uℓ = 0,

i.e. (2.7) holds. The equation (2.6) is verified directly by substitution of (2.5) and
using the obvious properties of the generalized inverse.

�

Remark 2.3. Note that if instead of (2.9), D⊕ were defined as

D⊕
ii =

{
1/Dii, Dii > 0

c, Dii = 0

with c ̸= 0, the same estimate would be obtained.

2. Recursive orthogonal projection

Consider a pair of random processes (X,Y ) = (Xj , Yj)j∈Z+ with entries in L2

and let LY
j = span{1, Y0, ..., Yj}. Calculation of the optimal estimate Ê

(
Xj |LY

j

)
by

the formulae of Proposition 2.2 would require inverting matrices of sizes, growing
linearly with j. The following lemma is the key to a much more efficient calculation
algorithm of the orthogonal projection. Introduce the notations

X̂j := Ê
(
Xj |LY

j

)
, X̂j|j−1 := Ê(Xj |LY

j−1), Ŷj|j−1 := Ê(Yj |LY
j−1)

PX
j := E

(
Xj − X̂j

)(
Xj − X̂j

)∗
, PX

j|j−1 := E
(
Xj − X̂j|j−1

)(
Xj − X̂j|j−1

)∗
PXY
j|j−1 := E

(
Xj − X̂j|j−1

)(
Yj − Ŷj|j−1

)∗
, PY

j|j−1 := E
(
Yj − Ŷj|j−1

)(
Yj − Ŷj|j−1

)∗
Then

7this is the generalized inverse of Moore and Penrose, in the special case of nonnegative
definite matrix. Note that it coincides (as should be) with the ordinary inverse if the latter exists.
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Proposition 2.4. For j ≥ 1

X̂j = X̂j|j−1 + PXY
j|j−1

[
PY
j|j−1

]⊕(
Yj − Ŷj|j−1

)
(2.11)

and

PX
j = PX

j|j−1 − PXY
j|j−1

[
PY
j|j−1

]⊕
PXY ∗
j|j−1. (2.12)

Proof. To verify (2.11), check that

η := Xj − X̂j|j−1 + PXY
j|j−1

[
PY
j|j−1

]⊕(
Yj − Ŷj|j−1

)
is orthogonal to LY

j . Note that η is orthogonal to LY
j−1 and so it suffices to show

that η ⊥ Yj or equivalently η ⊥ (Yj − Ŷj|j−1):

Eη(Yj − Ŷj|j−1) = PXY
j|j−1 − PXY

j|j−1

[
PY
j|j−1

]⊕
PY
j|j−1 =

PXY
j|j−1

(
I −

[
PY
j|j−1

]⊕
PY
j|j−1

)
= 0

where the last equality is verified as in (2.10). The equation (2.12) is obtained
similarly to (2.6). �

3. The Kalman-Bucy filter in discrete time

Consider a pair of processes (X,Y ) = (Xj , Yj)j≥0, generated by the linear
recursive equations (j ≥ 1)

Xj = a0(j) + a1(j)Xj−1 + a2(j)Yj−1 + b1(j)εj + b2(j)ξj (2.13)

Yj = A0(j) +A1(j)Xj−1 +A2(j)Yj−1 +B1(j)εj +B2(j)ξj (2.14)

where

* Xj and Yj have values in Rm and Rn respectively
* ε = (εj)j≥1 and ξ = (ξj)j≥1 are orthogonal (discrete time) white noises
with values in Rℓ and Rk, i.e.

Eεj = 0, Eεjε
∗
i =

{
I, i = j

0, i ̸= j
∈ Rℓ×ℓ

Eξj = 0, Eξjξ
∗
i =

{
I, i = j

0, i ̸= j
∈ Rk×k

and

Eεjξ
∗
i = 0 ∀i, j ≥ 0.

* the coefficients a0(j), a1(j), etc. are deterministic (known) sequences of
matrices of appropriate dimensions 8. From here on we will omit the time
dependence from the notation for brevity.

* the equations are solved subject to random vectors X0 and Y0, uncorre-
lated with the noises ε and ξ, whose means and covariances are known.

8Note the customary abuse of notations, now time parameter is written in the parenthesis
instead of subscript
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Denote the optimal linear estimate of Xj , given LY
j = span{1, Y1, ..., Yj}, by

X̂j = Ê(Xj |LY
j )

and the corresponding error covariance matrix by

Pj = E
(
Xj − X̂j

)(
Xj − X̂j

)∗
Theorem 2.5. The estimate X̂j and the error covariance Pj satisfy the equa-

tions

X̂j = a0 + a1X̂j−1 + a2Yj−1 +
(
a1Pj−1A

∗
1 + b ◦B

)
·(

A1Pj−1A
∗
1 +B ◦B

)⊕(
Yj −A0 −A1X̂j−1 −A2Yj−1

)
(2.15)

and

Pj = a1Pj−1a
∗
1 + b ◦ b−

(
a1Pj−1A

∗
1 + b ◦B

)
·(

A1Pj−1A
∗
1 +B ◦B

)⊕(
a1Pj−1A

∗
1 + b ◦B

)∗
(2.16)

where

b ◦ b = b1b
∗
1 + b2b

∗
2, b ◦B = b1B

∗
1 + b2B

∗
2 , B ◦B = B1B

∗
1 +B2B

∗
2

(2.15) and (2.16) are solved subject to

X̂0 = EX0 + cov(X0, Y0) cov(Y0)
⊕(Y0 − EY0)

P0 = cov(X0)− cov(X0, Y0) cov(Y0)
⊕ cov(X0, Y0)

∗.

Proof. Apply the formulae of Proposition 2.4 and the properties of orthogonal
projections. For example

X̂j|j−1 = Ê
(
a0 + a1Xj−1 + a2Yj−1 + b1εj + b2ξj |LY

j−1

)
†
=

a0 + a1Ê
(
Xj−1|LY

j−1

)
+ a2Yj−1 = a0 + a1X̂j−1 + a2Yj−1,

where the equality † holds since εj and ξj are orthogonal to LY
j−1. �

Example 2.6. Consider an autoregressive scalar signal, generated by

Xj = aXj−1 + εj , X0 = 0

where a is a constant and ε is a white noise sequence. Suppose it is observed via a
noisy linear sensor, so that the observations are given by

Yj = Xj−1 + ξj

where ξj is another white noise, orthogonal to ε. Applying the equations from
Theorem 2.5, one gets

X̂j = aX̂j−1 +
aPj−1

Pj−1 + 1

(
Yj − X̂j−1

)
, X̂0 = 0

where

Pj = a2Pj−1 + 1−
a2P 2

j−1

Pj−1 + 1
, P0 = 0. (2.17)

�
Many more interesting examples are given as exercises in the last section of

this chapter.
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3.1. Properties of the Kalman-Bucy filter.
1. The equation for Pj is called difference (discrete time) Riccati equation (analo-

gously to differential Riccati equation arising in continuous time). Note that it does
not depend on the observations and so can be solved off-line (before the filter is
applied to the data). Even if all the coefficients of the system (2.13) and (2.14) are
constant matrices, the optimal linear filter has in general time-varying coefficients.

2. Existence, uniqueness and strict positiveness of the limit P∞ := limj→∞ Pj is
a non-trivial question, the answer to which is known under certain conditions on
the coefficients. If the limit exists and is unique, then one may use the stationary
version of the filter, where all the coefficients are calculated with Pj−1 replaced by
P∞. In this case, the error matrix of this ”suboptimal” filter converges to P∞ as
well, i.e. such stationary filter is asymptotically optimal as j → ∞. Note that the
infinite sequence (X,Y ) generated by (2.13) and (2.14) may not have an L2 limit
(e.g. if |a| ≥ 1 in Example 2.6), so the infinite horizon problem actually is beyond
the scope of Theorem 2.1. When (X,Y ) is in L2, then the filter may be used e.g.

to realize the orthogonal projection9 Ê(X0|LY
(−∞,0]). This would coincide with the

estimates, obtained via Kolmogorov-Wiener theory for stationary processes (see
[28] for further exploration).

3. The propagation of X̂j and Pj is sometimes regarded in two-stages: prediction

X̂j|j−1 = a0 + a1X̂j−1 + a2Yj−1, Ŷj|j−1 = A0 +A1X̂j−1 +A2Yj−1

and update

X̂j = X̂j|j−1 +Kj(Yj − Ŷj|j−1)

where Kj is the Kalman gain matrix from (2.15). Similar interpretation is possible
for Pj .

4. The sequence

ε̄j = Yj −A0 −A1X̂j−1 −A2Yj−1 (2.18)

turns to be an orthogonal sequence and is called the innovations: it is the residual
”information” borne by Yj after its prediction on the basis of the past information
is subtracted.

Exercises

(1) Prove that L2 is complete, i.e. any Cauchy sequence converges to a random
variable in L2. Hint: show first that from any Cauchy sequence in L2 a
P-a.s. convergent subsequence can be extracted (Exercise (3a) on page
22)

(2) Complete the proof of Proposition 2.2 (verify (2.6))
(3) Complete the proof of Proposition 2.4.
(4) Show that the innovation sequence ε̄j from (2.18) is orthogonal. Find its

covariance sequence Eε̄j ε̄
∗
j .

(5) Show that the limit limj→∞ Pj in (2.17) exists10 and is positive. Find
the explicit expression for P∞. Does it exist when the equation (2.17) is
started from any nonnegative P0 ?

9here LY
(−∞,0]

= span{..., Y1, Y0}
10Note that the filtering error Pj is finite even if the signal is ”unstable” (|a| ≥ 1), i.e. all its

trajectories diverge to ∞ as j → ∞.
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(6) Derive the Kalman-Bucy filter equations for the model, similar to Example
2.6, but with non-delayed observations

Xj = aXj−1 + εj

Yj = Xj + ξj

(7) Derive the equations (4) and (5) on the page 8.
(8) Consider the continuous-time AM11 radio signalXt = A(st+1) cos(ft+φ),

t ∈ R+ with the carrier frequency f , amplitude A and phase φ. The time
function st is the information message to be transmitted to the receiver,
which recovers it by means of synchronous detection algorithm: it gener-
ates a cosine wave of frequency f ′, phase φ′ and amplitude A′, and forms
the base-band signal as follows

ŝt = [A′ cos(f ′t+ φ′)Xt]LPF , (2.19)

where [·]LPF is the (ideal) low pass filter operator, defined by

[qt + rt cos(c1t+ c2)]LPF = qt, ∀c1, c2 ∈ R, c1 ̸= 0

for any time functions qt and rt.
(a) Show that to get ŝt = st for all t ≥ 0, the receiver has to know f , A

and φ (and choose f ′, φ′ and A′ appropriately).
(b) Suppose the receiver knows f (set f = 1), but not A and φ. The

following strategy is agreed between the transmitter and the receiver:
st ≡ 0 for all 0 ≤ t ≤ T (the training period), i.e. the transmitter
chooses some A and φ and sends Xt = A cos(t+φ) to the channel till
time T . The digital receiver is used for processing the transmission,
i.e. the received wave is sampled at times tj = ∆j, j ∈ Z+ with
some fixed ∆ > 0, so that the following observations are available for
processing:

Yj+1 = A cos(∆j + φ) + σξj+1, j = 0, 1, ... (2.20)

where ξ is a white noise sequence of intensity σ > 0. Define

ζt =

(
Xt

Ẋt

)
and let Zj := ζ∆j , j ∈ Z+. Find the recursive equations for Zj , i.e.
the matrix θ(∆) (depending on ∆) such that

Zj+1 = θ(∆)Zj . (2.21)

(c) Using (2.21) and (2.20) and assuming that A and φ are random
variables with uniform distributions on [a1, a2], 0 < a1 < a2 and
[0, 2π] respectively, derive the Kalman-Bucy filter equations for the

estimate Ẑj = Ê(Zj |LY
j ) and the corresponding error covariance Pj .

(d) Find the relation between the estimates Ẑj , j = 0, 1, ... and the signal
estimate12

X̂∆
t := Ê

(
Xt|LY

⌊t/∆⌋]
)

for all t ∈ R+

11AM - amplitude modulation
12recall that ⌊x⌋ is the integer part of x
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(e) Solve the Riccati difference equation from (c) explicitly13

(f) Is exact asymptotical synchronization possible, i.e.

lim
T→∞

E
(
XT − X̂∆

T

)2
= 0 (2.22)

for any ∆ > 0 ? For those ∆ (2.22) holds, find the decay rate of
the synchronization error, i.e. find the sequence rj > 0 and positive
number c, such that

lim
j→∞

E
(
X∆j − X̂∆

∆j

)2
/rj = c.

(g) Relying on the asymptotic result from (e) and assuming ∆ = 1, what
should be T to attain synchronization error of 0.001 ?

(h) Simulate numerically the results of this problem (using e.g. MAT-
LAB)

(9) (taken from R.Kalman [13]) A number of particles leaves the origin at
time j = 0 with random velocities; after j = 0, each particle moves with
a constant (unknown velocity). Suppose that the position of one of these
particles is measured, the data being contaminated by stationary, additive,
correlated noise. What is the optimal estimate of the position and velocity
of the particle at the time of the last measurement ?

Let x1(j) be the position and x2(j) the velocity of the particle; x3(j)
is the noise. The problem is then represented by the model:

x1(j + 1) = x1(j) + x2(j)

x2(j + 1) = x2(j) (2.23)

x3(j + 1) = φx3(j) + u(j)

y(j) = x1(j) + x3(j)

and the additional conditions
* Ex21(0) = Ex2(0) = 0, Ex22(0) = a2 > 0
* Eu(j) = 0, Eu2(j) = b2

(a) Derive Kalman-Bucy filter equations for the signal

Xj =

x1(j)x2(j)
x3(j)


(b) Derive Kalman-Bucy filter equations for the signal

Xj =

(
x2(j)
x3(j)

)
using the obvious relation x1(j) = jx2(j) = jx2(0).

(c) Solve the Riccati equation from (b) explicitly14

13Hint: you may need the very useful Matrix Inversion Lemma (verify it): for any matrices
A,B,C and D (such that the required inverses exist), the following implication holds

A = B−1 + CD−1C∗ ⇔ A−1 = B −BC(D + C∗BC)−1C∗B

14Hint: use the fact that the error covariance matrix is two dimensional and symmetric, i.e.

there are only three parameters to find. Let the tedious calculations not scare you - the reward is
coming!
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(d) Show that for φ ̸= 1 (both |φ| < 1 and |φ| > 1!), the mean square
errors of the velocity and position estimates converge to 0 and b2

respectively. Find the convergence rate for the velocity error.
(e) Show that for φ = 1, the mean square error for of the position di-

verges15!
(f) Define the new observation sequence

δy(j + 1) = y(j + 1)− φy(j), j ≥ 0

and δy(0) = y(0). Then (why?)

span{δy(j), 0 ≤ j ≤ n} = span{y(j), 0 ≤ j ≤ n}.
Derive the Kalman-Bucy filter for the signal Xj := x2(j) and obser-
vations δyj . Verify your answer in (e).

(10) Consider the linear system of algebraic equations Ax = b, where A is an
m × n matrix and b is an n × 1 column vector. The generalized solution
of these equations is a vector x′, which solves the following minimization
problem (the usual Euclidian norm is used here)

x′ :=

{
argminx∈Γ

∥∥x∥∥2 Γ ̸= ∅
argminx∈R

∥∥Ax− b
∥∥2 Γ = ∅

where Γ = {x ∈ R : ∥Ax − b∥ = 0}. If A is square and invertible then
x = A−1b. If the equations Ax = b are satisfied by more than one vector,
then the vector with the least norm is chosen. If Ax = b has no solutions,
then the vector which minimizes the norm ∥Ax−b∥ is chosen. This defines
x′ uniquely, moreover

x′ := A⊕b = (A∗A)⊕A∗b

where A⊕ is the Moore-Penrose generalized inverse (recall that (A∗A)⊕

has been defined in (2.8)).
(a) Applying the Kalman-Bucy filter equations, show that x′ can be

found by the following algorithm:

x̂j = x̂j−1 + (bj − x̂j−1)

{
Pj−1a

j∗

ajPj−1aj∗ , ajPj−1a
j∗ > 0

0 ajPj−1a
j∗ = 0

and

Pj−1 = Pj−1 +

{
Pj−1a

j∗ajPj−1
ajPj−1aj∗ , ajPj−1a

j∗ > 0

0 ajPj−1a
j∗ = 0

,

where aj is the j-th row of the matrix A and bj are the entries of b.
To calculate x, these equations are to be started from P0 = I and
x̂0 = 0 and run for j = 1, ...,m. The solution is given by x′ = x̂m.

(b) Show that for each j ≤ m,

ajPj−1a
j∗ = min

c1,...,cj−1

∥∥∥∥∥aj −
j−1∑
ℓ=1

cja
ℓ

∥∥∥∥∥
2

15Note that for |φ| ≥ 1 the noise is ”unstable” in the sense that its trajectories escape to
±∞. When |φ| > 0 this happens exponentially fast (in appropriate sense) and when φ = 1, the

divergence is ”linear”. Surprisingly (for the author at least) the position estimate is ”worse” in
the latter case!
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so that ajPj−1a
j∗ = 0 indicates that a row, linearly dependent on the

previous ones, is encountered. So counting the number of times zero
was used to propagate the above equations, the rank of A is found
as a byproduct.

(11) LetX = (Xj)j∈Z+ be a Markov chain with values in a finite set of numbers
S = {a1, ..., ad}, the matrix Λ of transition probabilities λij and initial
distribution ν16, i.e.

P(Xj = aℓ|Xj−1 = am) = λℓm, P(X0 = aℓ) = νℓ, 1 ≤ ℓ,m ≤ d.

(a) Let pn be the vector with entries pj(i) = P(Xj = ai), j ≥ 0. Show
that pj satisfies

pj = Λ∗pj−1, s.t. p0 = ν j ≥ 0.

(b) Let Ij be the vectors with entries Ij(i) = 1(Xj = ai), j ≥ 0. Show
that there exists a sequence of orthogonal random vectors εj , such
that

Ij = Λ∗Ij−1 + εj , j ≥ 0

Find its mean and covariance matrix.
(c) Suppose that the Markov chain is observed via noisy samples

Yj = h(Xj) + σξj , j ≥ 1

where ξ is a white noise (with square integrable entries) and σ > 0
is its intensity. Let h be the column vector with entries h(ai). Verify
that

Yj = h∗Ij + σξj .

(d) Derive the Kalman-Bucy filter for Îj = Ê(Ij |LY
j ).

(e) What would be the estimate of Ê
(
g(Xj)|LY

j

)
for any g : S 7→ R in

terms of Îj ? In particular, X̂j = Ê(Xj |LY
j )?

(12) Consider the ARMA(p,q) signal17 X = (Xj)j≥0, generated by the recur-
sion

Xj = −
p∑

k=1

akXj−k +

q∑
ℓ=0

aℓεj−ℓ, j ≥ p

subject to say X0 = X1 = ... = Xp = 0. Suppose that

Yj = Xj−1 + ξj , j ≥ 1.

Suggest a recursive estimation algorithm for Xj , given LY
j , based on the

Kalman-Bucy filter equations.

16Such a chain is a particular case of the Markov processes as in Example 1.3 on page 16
and can be constructed in the following way: let X0 be a random variable with values in S and
P(X0 = aℓ) = νℓ, 0 ≤ ℓ ≤ d and

Xj =

d∑
i=1

ηij1{Xj−1=ai}, j ≥ 0

where ηij is a table of independent random variables with the distribution

P(ηij = aℓ) = λiℓ, j ≥ 0, 1 ≤ i, ℓ ≤ d

17ARMA(p,q) stands for ”auto regressive of order p and moving average of order q”. This
model is very poplar in voice recognition (LPC coefficients), compression, etc.





CHAPTER 3

Nonlinear filtering in discrete time

Let X and Z be a pair of independent real random variables on (Ω,F,P) and
suppose that EX2 <∞. Assume for simplicity that both have probability densities
fX(u) and fZ(u), i.e.

P(X ≤ u) =

∫ u

−∞
fX(x)dx, P(Z ≤ u) =

∫ u

−∞
fZ(x)dx.

Suppose it is required to estimate X, given the observed realization of the sum
Y = X + Z or, in other words, to find a function1 ḡ : R 7→ R, so that

E
(
X − ḡ(Y )

)2 ≤ E
(
X − g(Y )

)2
(3.1)

for any other function g : R 7→ R. Note that such a function should be square

integrable as well, since (3.1) with g = 0 and ḡ2(Y ) ≤ 2X2 + 2
(
X − ḡ(Y )

)2
imply

Eḡ2(Y )2 ≤ 4EX2 <∞.

Moreover, if ḡ satisfies

E
(
X − ḡ(Y )

)
g(Y ) = 0 (3.2)

for any g : R 7→ R, such that Eg2(Y ) < ∞, then (3.1) would be satisfied too.

Indeed, if E
(
X − g(Y )

)2
= ∞, the claim is trivial and if E

(
X − g(Y )

)2
<∞, then

Eg2(Y ) ≤ 2EX2 + 2E(g(Y )−X)2 <∞ and

E
(
X − g(Y )

)2
= E

(
X − ḡ(Y ) + ḡ(Y )− g(Y )

)2
=

E
(
X − ḡ(Y )

)2
+ E

(
ḡ(Y )− g(Y )

)2 ≥ E
(
X − ḡ(Y )

)2
Moreover, the latter suggests that if another function satisfies (3.1), then it

should be equal to ḡ on any set A, such that P(Y ∈ A) > 0. Does such a function
exist ? Yes - we give an explicit construction using (3.2)

E
(
X − ḡ(Y )

)
g(Y ) =

∫
R

∫
R

(
x− ḡ(x+ z)

)
g(x+ z)fX(x)fZ(z)dxdz =∫

R

∫
R

(
x− ḡ(u)

)
g(u)fX(x)fZ(u− x)dxdu =∫

R
g(u)

(∫
R

(
x− ḡ(u)

)
fX(x)fZ(u− x)dx

)
du

The latter would vanish if∫
R

(
x− ḡ(u)

)
fX(x)fZ(u− x)dx = 0

1g should be a Borel function (measurable with respect to Borel σ-algebra on R) so that all
the expectations are well defined

37
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is satisfied for all u, which leads to

ḡ(u) =

∫
R xfX(x)fZ(u− x)dx∫
R fX(x)fZ(u− x)dx

.

So the best estimate of X given Y is the random variable

E(X|Y )(ω) =

∫
R xfX(x)fZ(Y (ω)− x)dx∫
R fX(x)fZ(Y (ω)− x)dx

, (3.3)

which is nothing but the familiar Bayes formula for the conditional expectation of
X given Y .

1. The conditional expectation: a closer look

1.1. The definition and the basic properties. Let (Ω,F,P) be a proba-
bility space, carrying a random variable X ≥ 0 with values in R and let G be a
sub-σ-algebra of F.

Definition 3.1. The conditional expectation2 of X ≥ 0 with respect to G is a
real random variable, denoted by E(X|G)(ω), which is G-measurable, i.e.{

ω : E(X|G)(ω) ∈ A
}
∈ G, ∀A ∈ B(R)

and satisfies
E
(
X − E(X|G)(ω)

)
1A(ω) = 0, ∀A ∈ G.

Why is this definition correct, i.e. is there indeed such a random variable and
is it unique? The positive answer is provided by the Radon-Nikodym theorem from
analysis

Theorem 3.2. Let (X,X ) be a measurable space3, µ be a σ-finite 4 measure
and ν is a signed measure5, absolutely continuous 6 with respect to µ. Then there is
exists an X -measurable function f = f(x), taking values in R ∪ {±∞}, such that

ν(A) =

∫
A

f(x)µ(dx), A ∈ X .

f is called the Radon-Nikodym derivative (or density) of ν with respect to µ and is
denoted by dν

dµ . It is unique up to µ-null sets7.

Now consider the measurable space (Ω,G) and define a nonnegative set function
on8 G

Q(A) =

∫
A

XP(dω) = EX1A, A ∈ G. (3.4)

2Note that the conditional probability is a special case of the conditional expectation:
P(B|G) = E(IB |G)

3i.e. a collection of points X with a σ-algebra of sets X
4i.e. µ(X) = ∞ is allowed, only if there is a countable partition Dj ∈ X ,

⊎
j Dj = X, so that

µ(Dj) < ∞ for any j. For example, the Lebesgue measure on B(R) is not a finite measure (the

”length” of the whole line is ∞). It is σ-finite, since R can be partitioned into e.g. intervals of
unit Lebesgue measure.

5i.e. which can be represented as ν = ν1 − ν2, with at least one of νi is finite
6A measure µ is absolutely continuous with respect to ν (denoted µ ≪ ν), if for any A ∈ X

ν(A) = 0 =⇒ µ(A) = 0. The measures µ and ν are said to be equivalent µ ∼ ν, if µ ≪ ν and

ν ≪ µ.
7i.e. if there is another function h, such that ν(A) =

∫
A h(x)µ(dx) then µ(h ̸= f) = 0

8Note that the integral here is well defined for A ∈ F as well, but we restrict it to A ∈ G only
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This set function is a nonnegative σ-finite measure: take for example the partition
Dj = {j ≤ X < j + 1}, j = 0, 1, ..., then Q(Dj) = EX1{X∈[j,j+1)} < ∞ even if
EX = ∞. To verify Q ≪ P, let A be such that P(A) = 0 and let Xj be a sequence
of simple random variables, such that Xj ↗ X (for example as in (1.1) on page
17), i.e.

Xj =
∑
k

xjk1Bj
k
, Bj

k ∈ F, xjk ∈ R

Since

EXj1A =
∑
k

xjkP(B
j
k ∩A) = 0,

by monotone convergence (see Theorem A.1 in the Appendix ) Q(A) = EX1A =
limj EXj1A = 0. Now by Radon-Nikodym theorem there exists the unique up to
P-null sets random variable ξ, measurable with respect to G (unlike X itself!), such
that

Q(A) =

∫
A

ξP(A), ∀A ∈ G.

This ξ is said to be a version of the conditional expectation E(X|G) to emphasize
its uniqueness only up to P-null sets:

E(X|G) = dQ

dP
(ω).

For a general random variable X, taking both positive and negative values,
define E(X|G) = E(X+|G)−E(X−|G), if no ∞−∞ confusion occurs with positive
probability. Note that ∞ − ∞ is allowed on the P-null sets, in which case an
arbitrary value can be assigned. For this reason, the conditional expectation E(X|G)
may be well defined even, when EX is not. For example, let FX be the σ-algebra
generated by the pre-images {X ∈ A}, A ∈ B(R). Suppose that EX+ = ∞ and
EX− = ∞, so that EX is not defined. Since {X+ = ∞∩X− = ∞} is a null set,
the conditional expectation is well defined and equals

E(X|FX) = E(X+|FX)− E(X−|FX) = X+ −X− = X.

Example 3.3. Let G be the (finite) σ-algebra generated by the finite partition
Dj ∈ F, j = 1, ..., n, ⊎Dj = Ω, P(Dj) > 0. Any G-measurable random variable
(with real values) ξ is necessarily constant on each set Dj : suppose it takes two
distinct values on e.g. D1, say x

′ < x′′, then {ω : X(ω) ≤ x′}∩D1 and {ω : X(ω) ≥
x′′} ∩ D1 are disjoint subsets of D1 and hence not in any other Di, i ̸= j. Thus
both events clearly cannot be in G. So for any random variable X,

E(X|G) =
n∑

j=1

aj1Dj (ω).

The constants aj are found from

E
(
X −

n∑
j=1

ak1Dj

)
1Di = 0, i = 1, ..., n,

which leads to

E(X|G) =
n∑

j=1

EX1Dj

P(Dj)
1Dj (ω).

�
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The conditioning with respect to σ-algebras generated by the pre-images of
random variables (or more complex random objects), i.e. by the sets of the form

FY = σ{ω : Y ∈ A}, A ∈ B(R)
are of special interest. Given a pair of random variables (X,Y ), E(X|Y ) is some-
times9 written shortly for E(X|FY ). It can be shown, that for any FY -measurable
random variable Z(ω), there exists a Borel function φ, such that Z = φ(Y (ω)). In
particular, there always can be found a Borel function g, so that E(X|Y ) = g(Y ).
This function is sometimes denoted by E(X|Y = y).

The main properties of the conditional expectations are10

(A) if C is a constant and X = C, then E(X|G) = C
(B) if X ≤ Y , then E(X|G) ≤ E(Y |G)
(C) |E(X|G)| ≤ E(|X||G)
(D) if a, b ∈ R, and aEX + bEY is well defined, then

E(aX + bY |G) = aE(X|G) + bE(Y |G)
(E) if X is G-measurable, then E(X|G) = X
(F) if G1 ⊆ G2, then E

(
E(X|G2)

∣∣G1

)
= E(X|G1)

(G) if X and Y are independent and f(x, y) is such that E|f(X,Y )| < ∞,
then

E
(
f(X,Y )|Y

)
=

∫
Ω

f
(
X(ω′), Y (ω)

)
P(dω′)

In particular, if X is independent of G and EX is well defined, then
E(X|G) = EX.

(H) if Y is G-measurable and E|Y | <∞ and E|Y X| <∞, then

E
(
XY |G

)
= Y E(X|G)

(I) let (X,Y ) be a pair of random variables and E|X|2 <∞, then

E
(
X − E(X|Y )

)2
= inf

φ
E
(
X − φ(Y )

)2
(3.5)

where all the Borel functions φ are taken.

Let Aj be a sequence of disjoint events, then

P
(
⊎Aj |G

)
=
∑
j

P (Aj |G). (3.6)

So one is tempted to think that for any fixed ω, P(A|G)(ω) is a measure on F. This
is wrong in general, since (3.6) holds only up to P-null sets. Denote by Ni the set of

points at which (3.6) fails for the specific sequence A
(i)
j , j = 1, 2, .... And let N be

the set of all null sets of the latter form. Since in general there can be uncountably
many sequences of events, N may have positive probability ! So in general, the
function

FX(x;ω) = P
(
X ≤ x|G

)
(ω)

may not be a proper distribution function for ω from a set of positive probability.
It turns out that for any random variable X with values in a complete separable

metric space X, there exists so called regular conditional measure of X, given G,
i.e. a function PX(B;ω), which is a probability measure on B(X) for each fixed

9throughout these notations are freely switched
10as usual any relations, involving comparison of random variables are understood P-a.s.
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ω ∈ Ω and is a version of P(X ∈ B|G)(ω). Obviously regular conditional expec-
tation plays the central role in statistical problems, where typically it is required
to find an explicit formula (function), which can be applied to the realizations of
the observed random variables. For example regular conditional expectation was
explicitly constructed in (3.3).

1.2. The Bayes formula: an abstract formulation. The Bayes formula
(3.3) involves explicit distribution functions of the random variables involved in
the estimation problem. On the other hand, the abstract definition of the con-
ditional expectation of the previous section, allows to consider the setups, where
the conditioning σ-algebra is not necessarily generated by random variables, whose
distribution have explicit formulae: think for example of E(X|FY

t ), when FY
t =

σ{Ys, 0 ≤ s ≤ t} with Yt, being a continuous time process.

Theorem 3.4. (the Bayes formula) Let (Ω,F,P) be a probability space, carry-
ing a real random variable X and let G be a sub-σ-algebra of F. Assume that there
exists a regular conditional probability measure 11 P(dω|X = x) on G and it has
Radon-Nikodym density ρ(ω;x) with respect to a σ-finite measure λ (on G):

P(B|X = x) =

∫
B

ρ(ω;x)λ(dω).

Then for any φ : R 7→ R, such that E|φ(X)| <∞,

E
(
φ(X)|G

)
=

∫
R φ(u)ρ(ω;u)PX(du)∫

R ρ(ω;u)PX(du)
, (3.7)

where PX is the probability measure induced by X (on B(R)).

Proof. Recall that

E
(
φ(X)|G

)
(ω) =

dQ

dP
(ω) (3.8)

where Q is a signed measure, defined by

Q(B) =

∫
B

φ(X(ω))P(dω), B ∈ G.

Let FX = σ{X}. Then for any B ∈ G

P(B) = EE(1B |FX) =

∫
Ω

P(B|FX)(ω)P(dω)
†
=

∫
R
P(B|X = u)PX(du) =∫

R

∫
B

ρ(ω;u)λ(dω)PX(du)
‡
=

∫
B

(∫
R
ρ(ω;u)PX(du)

)
λ(dω) (3.9)

where the equality † is changing variables under the Lebesgue integral and ‡ follows
from the Fubini theorem (see Theorem A.5 Appendix for quick reference). Also for
any B ∈ G

Q(B) := Eφ(X)1B = Eφ(X)E
(
1B |FX

)
(ω) =

∫
R
φ(u)P(B|X = u)dPX(du) =∫

R
φ(u)

∫
B

ρ(ω;u)λ(dω)PX(du) =

∫
B

(∫
R
φ(u)ρ(ω;u)PX(du)

)
λ(dω). (3.10)

11i.e. a measurable function P (B;x), which is a probability measure on F for any fixed x ∈ R
and P (B;X(ω)) coincides with P (B|FX)(ω) up to P-null sets.
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Note that Q ≪ P and by (3.9) P ≪ λ (on G!) and thus also Q ≪ λ. So for any
B ∈ G

Q(B) =

∫
B

dQ

dP
(ω)P(dω) =

∫
B

dQ

dP
(ω)

dP

dλ
(ω)λ(dω)

while on the other hand

Q(B) =

∫
B

dQ

dλ
(ω)dλ, ∀B ∈ G.

By arbitrariness of B, it follows that

dQ

dλ
(ω) =

dQ

dP
(ω)

dP

dλ
(ω), λ− a.s.

Now since

P

{
ω :

dP

dλ
(ω) = 0

}
=

∫
Ω

1

(
dP

dλ
(ω) = 0

)
P(dω) =∫
Ω

1

(
dP

dλ
(ω) = 0

)
dP

dλ
(ω)λ(dω) = 0

it follows
dQ

dP
(ω) =

dQ/dλ(ω)

dP/dλ(ω)
, P− a.s.

The latter and (3.8), (3.9), (3.10) imply (3.7). �

Corollary 3.5. Suppose that G is generated by a random variable Y and there
is a σ-finite measure ν on B(R) and a measurable function (density) r(u;x) ≥ 0 so
that

P(Y ∈ A|X = x) =

∫
A

r(u;x)ν(du).

Then for |φ(X)| <∞,

E
(
φ(X)|G

)
=

∫
R φ(u)r

(
Y (ω), u

)
PX(du)∫

R r
(
Y (ω), u

)
PX(du)

. (3.11)

Proof. By the Fubini theorem (see Appendix)

P(Y ∈ A) = EP(Y ∈ A|X) = E

∫
A

r(u;X(ω))ν(du) =

∫
A

Er(u;X(ω))ν(du).

Denote r̄(u) := Er(u;X(ω)) and define

ρ(ω;x) =


r
(
Y (ω),x

)
r̄
(
Y (ω)

) , r̄
(
Y (ω)

)
> 0

0, r̄
(
Y (ω)

)
= 0

Any G-measurable set is by definition a preimage of some A under Y (ω), i.e. for
any B ∈ G, there is A ∈ B(R) such that B = {ω : Y (ω) ∈ A}. Then∫

B

ρ(ω;x)P(dω) =

∫
A

r
(
u, x

)
r̄
(
u
) r̄
(
u
)
ν(du) =∫

A

r(u;x)ν(du) = P(Y ∈ A|X = x) = P(B|X = x).

Now (3.11) follows from (3.7) with the specific ρ(ω;x) and λ(dω) := P(dω), where
the denominators cancel. �
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Remark 3.6. Let (Ω̌, F̌, P̌) be a copy of the probability space (Ω,F,P), then
(3.11) reads

E
(
φ(X)|G

)
=

Ěφ(X(ω̌))r
(
Y (ω), X(ω̌)

)
Ěr
(
Y (ω), X(ω̌)

) , (3.12)

where Ě denotes expectation on (Ω̌, F̌, P̌) (and X(ω̌) is a copy of X, defined on this
auxiliary probability space).

Remark 3.7. The formula (3.11) (and its notation (3.12)) holds when X and
Y are random vectors.

Remark 3.8. Often the following notation is used

P
(
X ∈ du|Y = y

)
=

r
(
y, u
)
PX(du)∫

R r
(
y, u
)
PX(du)

for the regular conditional distribution of X given FY . Note that it is absolutely
continuous with respect to the measure induced by X.

2. The nonlinear filter via the Bayes formula

Let (Xj , Yj)j≥0 be a pair of random sequences with the following structure:

* Xj is a Markov process with the transition kernel12Λ(x, du) and initial
distribution p(du), that is

P(Xj ∈ B|FX
j−1 ∨ FY

j−1) =

∫
B

Λ(Xj−1, du), P− a.s.

where13 FX
j−1 = σ{X0, ..., Xj−1}

P(X0 ∈ B) =

∫
B

p(du), ∀B ∈ B(R).

* Yj is a random sequence, such that for all14 j ≥ 0

P(Yj ∈ B|FX
j ∨ FY

j−1) =

∫
B

Γ(Xj , du), P− a.s (3.13)

with a Markov kernel Γ(x, du), which has density γ(x, u) with respect to
some σ-finite measure ν(du) on B(R).

* f : R 7→ R be a measurable function, such that E|f(Xj)| < ∞ for each
j ≥ 0.

Theorem 3.9. Let πj(dx) be the solution of the recursive equation

πj(dx) =

∫
R γ
(
u, Yj(ω)

)
Λ(u, dx)πj−1(du)∫

R
∫
R γ
(
u, Yj(ω)

)
Λ(u, dx)πj−1(du)

, j ≥ 0 (3.14)

subject to

π0(dx) =

∫
R γ
(
u, Y0(ω)

)
p(du)∫

R
∫
R γ
(
u, Y0(ω)

)
p(du)

. (3.15)

12a function Λ : R×B(R) 7→ [0, 1] is called a Markov (transition) kernel, if Λ(x,B) is a Borel

measurable function for each B ∈ B(R) and is a probability measure on B(R) for each fixed x ∈ R.
13a family Fj of increasing σ-algebras is called filtration
14by convention FY

−1 = {∅,Ω}
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Then

E
(
f(Xj)|FY

j

)
=

∫
R
f(x)πj(dx), P− a.s. (3.16)

Proof. Note that by the above assumptions the pair process (Xj , Yj) is Markov
with the transition kernel Λ(x, du)γ(u, v)ν(dv):

P
(
Xj ∈ A, Yj ∈ B

∣∣FX
j−1 ∨ FY

j−1

)
=

∫
A

∫
B

γ(u, v)ν(dv)Λ(Xj−1, du),

and hence the regular conditional measure for the vector {Y0, ..., Yj}, given FX
j =

σ{X0, ..., Xj} is

P
(
Y0 ∈ A0, ..., Yj ∈ Aj |FX

j

)
=∫

A0

...

∫
Aj

γ(X0, u0) · · · γ(Xj , uj)ν(du0) · · · ν(duj). (3.17)

Then by Remark 3.7

E
(
φ(Xj)|FY

j

)
=

Ěφ(Xj(ω̌))
∏j

i=0 γ
(
Xi(ω̌), Yi

)
Ě
∏j

i=0 γ
(
Xi(ω̌), Yi

) (3.18)

Introduce the notation

Lj(X(ω̌), Y ) =

j∏
i=0

γ
(
Xi(ω̌), Yi

)
(3.19)

and note that

Ě
(
φ(Xj(ω̌))Lj(X(ω̌), Y )|FX

j−1

)
=

Lj−1(X(ω̌), Y )Ě
(
φ(Xj(ω̌))γ(Xj(ω̌), Yj)

∣∣FX
j−1

)
=

Lj−1(X(ω̌), Y )

∫
R
φ(u)γ(u, Yj)Λ(Xj−1(ω̌), du)

Then

E
(
φ(Xj)|FY

j

)
=

Ěφ(Xj(ω̌))Lj(X(ω̌), Y )

ĚLj(X(ω̌), Y )
=

ĚLj−1(X(ω̌), Y )
∫
R φ(u)γ(u, Yj)Λ(Xj−1(ω̌), du)

ĚLj−1(X(ω̌), Y )
∫
R γ(u, Yj)Λ(Xj−1(ω̌), du)

=

ĚLj−1(X(ω̌), Y )
∫
R φ(u)γ(u, Yj)Λ(Xj−1(ω̌), du)/ĚLj−1(X(ω̌), Y )

ĚLj−1(X(ω̌), Y )
∫
R γ(u, Yj)Λ(Xj−1(ω̌), du)/ĚLj−1(X(ω̌), Y )

=

E
( ∫

R φ(u)γ(u, Yj)Λ(Xj−1, du)
∣∣FY

j−1

)
E
( ∫

R γ(u, Yj)Λ(Xj−1, du)
∣∣FY

j−1

)
Now let πj(dx) be the regular conditional distribution of Xj , given FY

j . Then the
latter reads (again the Fubini theorem is used)∫

R
φ(x)πj(dx) = E

(
φ(Xj)|FY

j

)
=

∫
R
φ(u)

∫
R γ(u, Yj)Λ(x, du)πj−1(dx)∫

R
∫
R γ(u, Yj)Λ(x, du)πj−1(dx)

and by arbitrariness of φ (3.14) follows. The equation (3.15) is obtained similarly.
�
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Remark 3.10. The proof may seem unnecessarily complicated at the first
glance: in fact, a simpler and probably more intuitive derivation is possible (see
Exercise 10). This (and an additional derivation in the next section) is given for
two reasons: (1) to exercise the properties and notations, related to conditional
expectations and (2) to demonstrate the technique, which will be very useful when
working in continuous time case.

3. The nonlinear filter by the reference measure approach

Before proceeding to discuss the properties of (3.14), we give another proof of
it, using so called reference measure approach. This powerful and elegant method
requires stronger assumptions on (X,Y ), but gives an additional insight into the
structure of (3.14) and turns to be very efficient in the continuous time setup. It
is based on the following simple fact

Lemma 3.11. Let (Ω,F) be a probability space and let P and P̃ be equivalent

probability measures on F, i.e. P ∼ P̃. Denote by E(·|G) and Ẽ(·|G) the conditional

expectations with respect to G ⊆ F under P and P̃. Then for any X, E|X| <∞

E
(
X|G

)
=

Ẽ
(
X dP

dP̃
(ω)
∣∣G)

Ẽ
(
dP

dP̃
(ω)
∣∣G) . (3.20)

Proof. Note first that the right hand side of (3.20) is well defined (on the sets
of full P-probability15) , since

P

(
Ẽ
(dP
dP̃

(ω)|G
)
= 0

)
= Ẽ1

(
Ẽ
(dP
dP̃

(ω)
∣∣G) = 0

)
dP

dP̃
(ω) =

Ẽ1

(
Ẽ
(dP
dP̃

(ω)
∣∣G) = 0

)
Ẽ

(
dP

dP̃
(ω)
∣∣∣G) = 0.

Clearly the right hand side of (3.20) is G-measurable and for any A ∈ G

E

(
X −

Ẽ
(
X dP

dP̃
(ω)
∣∣G)

Ẽ
(
dP

dP̃
(ω)
∣∣G)

)
1A(ω) = Ẽ

(
X −

Ẽ
(
X dP

dP̃
(ω)
∣∣G)

Ẽ
(
dP

dP̃
(ω)
∣∣G)

)
1A(ω)

dP

dP̃
(ω) =

= ẼX
dP

dP̃
(ω)1A − Ẽ

Ẽ
(
X dP

dP̃
(ω)
∣∣G)

Ẽ
(
dP

dP̃
(ω)
∣∣G) 1AẼ

(
dP

dP̃
(ω)
∣∣G) = 0,

which verifies the claim. �

This lemma suggests the following way of calculating the conditional proba-

bilities: find a reference measure P̃, equivalent to P, under which calculation of

the conditional expectation would be easier (typically, P̃ is chosen so that X is
independent of G) and use (3.20).

Assume the following structure for the observation process 16 (all the other
assumptions remain the same)

15and thus also P̃-probability
16greater generality is possible with the reference measure approach, but is sacrificed here

for the sake of clarity
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* Yj = h(Xj)+ξj , where h is a measurable function R 7→ R and ξ = (ξj)j≥0

is an i.i.d. sequence, independent of X, such that ξ1 has a positive density
q(u) > 0 with respect to the Lebesgue measure:

P(ξ1 ≤ u) =

∫ u

−∞
q(s)ds.

Let’s verify the claim of Theorem 3.9 under this assumption. For a fixed j, let

Fj = FX
j ∨ FY

j (or equivalently Fj = FX
j ∨ F

ξ
j ). Introduce the (positive) random

process

Φj(X,Y ) :=

j∏
i=0

q(Yi)

q
(
Yi − h(Xi)

) . (3.21)

and define the probability measure P̃ (on Fj) by means of the Radon-Nikodym
derivative

dP̃

dP
(ω) = Φj

(
X(ω), Y (ω)

)
,

with respect to the restriction of P on Fj . P̃ is indeed a probability measure, since
Φj is positive and

P̃(Ω) =EΦj(X,Y ) = E

j∏
i=0

q(Yi)

q
(
Yi − h(Xi)

) = E

j∏
i=0

q
(
h(Xi) + ξi

)
q(ξi)

=

E

∫
R
...

∫
R

j∏
i=0

q
(
h(Xi) + ui

)
q(ui)

j∏
ℓ=0

q(uℓ)du0...duj =

E

∫
R
...

∫
R

j∏
i=0

q
(
h(Xi) + ui

)
du0...duj =

E

j∏
i=0

∫
R
q
(
h(Xi) + ui

)
dui = 1

Under measure P̃, the random processes (X,Y ) ”look” absolutely different:

(i) the distribution of the process17 Y under P̃, coincides with the distribution
of ξ under P

(ii) the distribution of the process X is the same under both measures P and

P̃
(iii) the processes X and Y are independent under P̃

17of course the restriction of Y to [0, j] is meant here
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Let ψ(x0, ..., xj) and ϕ(x0, ..., xj) be measurable bounded Rj+1 7→ R functions.
Then

Ẽψ(X0, ..., Xj)ϕ(Y0, ..., Yj) = Eψ(X0, ..., Xj)ϕ(Y0, ..., Yj)Φj(X,Y ) =

Eψ(X0, ..., Xj)ϕ(Y0, ..., Yj)

j∏
i=0

q(Yi)

q
(
Yi − h(Xi)

) =

Eψ(X0, ..., Xj)ϕ
(
h(X0) + ξ0, ..., h(Xj) + ξj

) j∏
i=0

q
(
h(Xi) + ξi

)
q
(
ξi
) =

Eψ(X0, ..., Xj)

∫
R
...

∫
R
ϕ
(
h(X0) + u0, ..., h(Xj) + uj

)
·

j∏
i=0

q
(
h(Xi) + ui

)
q
(
ui
) j∏

ℓ=0

q(uℓ)du0...duj =

Eψ(X0, ..., Xj)

∫
R
...

∫
R
ϕ
(
h(X0) + u0, ..., h(Xj) + uj

) j∏
i=0

q
(
h(Xi) + ui

)
du0...duj =

Eψ(X0, ..., Xj)

∫
R
...

∫
R
ϕ
(
u0, ..., uj

) j∏
i=0

q
(
ui
)
du0...duj =

Eψ(X0, ..., Xj)Eϕ
(
ξ0, ..., ξj

)
.

Now the claim (i) holds by arbitrariness of ϕ with ψ ≡ 1. Similarly the (ii) holds
by arbitrariness of ψ with ϕ ≡ 1. Finally, if (i) and (ii) hold then,

Ẽψ(X0, ..., Xj)ϕ(Y0, ..., Yj) = Eψ(X0, ..., Xj)ϕ
(
ξ0, ..., ξj

)
=

Ẽψ(X0, ..., Xj)Ẽϕ
(
Y0, ..., Yj

)
,

which is nothing but (iii) by arbitrariness of ϕ and ψ.
Now by Lemma 3.11 for any bounded function g,

E
(
g(Xj)|FY

j

)
=

Ẽ
(
g(Xj)Φ

−1
j (X,Y )|FY

j

)
Ẽ
(
Φ−1

j (X,Y )|FY
j

) =
Ěg(Xj(ω̌))Φ

−1
j (X(ω̌), Y (ω))

ĚΦ−1
j (X(ω̌), Y (ω))

(3.22)

where dP

dP̃
(ω) = Φ−1

j (X,Y ). The latter equality is due to independence of X and Y

under P̃ (the notations of Remark 3.6 are used here).
Now for arbitrary (measurable and bounded) function g

Ěg(Xj(ω̌))Φ
−1
j (X(ω̌), Y (ω)) = Ěg(Xj(ω̌))

(
Φ−1

j (X(ω̌), Y (ω))|Xj

)
=∫

R
g(u)Ě

(
Φ−1

j (X(ω̌), Y (ω))|Xj = u
)
PXj (du) :=

∫
R
g(u)ρj(du)
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On the other hand

Ěg(Xj(ω̌))Φ
−1
j (X(ω̌), Y (ω)) =

ĚΦ−1
j−1(X(ω̌), Y )Ě

(
g(Xj(ω̌))

q
(
Yj − h(Xj(ω̌))

)
q(Yj)

∣∣∣FX
j−1

)
=

ĚΦ−1
j−1(X(ω̌), Y )

∫
R
g(u)

q
(
Yj − h(u)

)
q(Yj)

Λ(Xj−1(ω̌), du) =∫
R
g(u)

∫
R

q
(
Yj − h(u)

)
q(Yj)

Λ(s, du)ρj−1(ds).

By arbitrariness of g, the recursion

ρj(du) =

∫
R

q
(
Yj − h(u)

)
q(Yj)

Λ(s, du)dρj−1(s). (3.23)

is obtained. Finally by (3.22)

E
(
g(Xj)|FY

j

)
=

∫
R g(u)ρj(du)∫

R ρj(du)

and hence the conditional distribution πj(du) from Theorem 3.9 can be calculated
by normalizing

πj(du) =
ρj(du)∫
R ρj(ds)

. (3.24)

Besides verifying (3.14), the latter suggests that πj(du) can be calculated by solving
linear (!) equation (3.23), whose solution ρj(du) (which is called the unnormalized
conditional distribution) is to be normalized at the final time j. In fact this remark-
able property can be guessed directly from (3.14) (under more general assumptions
on Y ).

4. The curse of dimensionality and finite dimensional filters

The equation (3.14) (or its unnormalized counterpart (3.23)) are not very prac-
tical solutions to the estimation problem: at each step they require at least two
integrations! Clearly the following property would be very desirable

Definition 3.12. The filter is called finite dimensional with respect to a
function f , if the right hand side of (3.16) can be parameterized by a finite number
of sufficient statistics, i.e. solutions of real valued difference equations, driven by
Y .

The evolution of πj can be infinite-dimensional, while the integral of πj versus
specific function f may admit a finite dimensional filter (see Exercise 21). Unfor-
tunately there is no easy way to determine whether the nonlinear filter at hand is
finite dimensional. Moreover sometimes it can be proved to be infinite dimensional.
In fact few finite dimensional filters are known, the most important of which are
described in the following sections.
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4.1. The Hidden Markov Models (HMM). Suppose that Xj is a Markov
chain with a finite state space S = {a1, ..., ad}. Then its Markov kernel is identified18

with the matrix Λ of transition probabilities λℓm = P(Xj = am|Xj−1 = aℓ). Let
p0 be the initial distribution of X, i.e. p0(ℓ) = P(X0 = aℓ). Suppose that the
observation sequence Y = (Yj)j≥1 satisfies

P(Yj ∈ A|FX
j ∨ FY

j−1) =

∫
A

νℓ(du), ℓ = 1, ..., d.

Note that each νℓ(du) is absolutely continuous with respect to the measure ν(du) =∑d
m=1 νm(du) and so no generality is lost if νℓ(du) = fℓ(u)ν(du) is assumed for

some fixed σ-finite measure on B(R) and densities fℓ(u). This statistical model is
extremely popular in various areas of engineering (see [7] for a recent survey).

Clearly the conditional distribution πj(dx) is absolutely continuous with respect
to the point measure with atoms at a1, ..., ad and so can be identified with the
density πj , which is just a vector of conditional probabilities P(Xj = aℓ|FY

j ), ℓ =
1, ..., d. Then by the formulae (3.14),

πj =
D(Yj)Λ

∗πj−1∣∣D(Yj)Λ∗πj−1

∣∣ , (3.25)

subject to π0 = p0, where |x| =
∑d

ℓ=1 |xℓ| (ℓ1 norm) of a vector x ∈ Rd and D(y)
is a scalar matrix with fℓ(y), y ∈ R, ℓ = 1, ..., d on the diagonal. Alternatively the
unnormalized equation can be solved

ρj = D(Yj)Λ
∗ρj−1, j ≥ 1

subject to ρ0 = p0 and then πj is recovered by normalizing πj = ρj/|ρj |. Finite
dimensional filters are known for several filtering problems, related to HMM - see
Exercise 21.

4.2. The linear Gaussian case: Kalman-Bucy filter revisited. The
Kalman-Bucy filter from Chapter 2 has a very special place among the nonlinear
filters due to the properties of Gaussian random vectors. Recall that

Definition 3.13. A random vector X, with values in Rd, is Gaussian if

E exp
{
iλ∗X

}
= exp

{
iλ∗m− 1

2
λ∗Kλ

}
, ∀λ ∈ Rd

for a vector m and a nonnegative definite matrix K.

Remark 3.14. It is easy to check that m = EX and K = cov(X).

It turns out that if characteristic function of a random vector is exponential of
a quadratic form, this vector is necessarily Gaussian. Gaussian vectors (processes)
play a special role in probability theory. The following properties make them special
in the filtering theory in particular:

Lemma 3.15. Assume that the vectors X and Y (with values in Rm and Rn

respectively) form a Gaussian vector (X,Y ) in Rm+n. Then

(1) Any random variable from the linear subspace, spanned by the entries of
(X,Y ) is Gaussian. In particular Z = b+AX with a vector b and a matrix
A, is a Gaussian vector with EZ = b+AEX and cov(Z) = A cov(X)A∗.

18In this case the Markov kernel is absolutely continuous to the point measure
∑d

i=1 δai (du)

and the matrix Λ is formally the density w.r.t this measure.
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(2) If X and Y are orthogonal, they are independent (the opposite direction
is obvious)

(3) The regular conditional distribution of X, given Y is Gaussian P-a.s.,

moreover19 E(X|Y ) = Ê(X|Y ) and

cov(X|Y ) := E
((
X − E(X|Y )

)(
X − E(X|Y )

)∗∣∣Y ) =

cov(X)− cov(X,Y ) cov⊕(Y ) cov(Y,X). (3.26)

Remark 3.16. Note that in the Gaussian case the conditional covariance does
not depend on the condition !

Proof. For fixed b and A

Eexp
{
iλ∗(b+AX)

}
= exp

{
iλ∗(b+AEX)

}
Eexp

{
i(λ∗A)(X − EX)

}
=

exp
{
iλ∗(b+AEX)

}
exp

{
− 1

2
λ∗
(
A cov(X)A∗)λ},

and the claim (1) holds, since the latter is a characteristic function of a Gaussian
vector.

Let λx and λy be vectors from Rm and Rn (so that λ = (λx, λy) ∈ Rm+n), then
due to orthogonality cov(X,Y ) = 0 and

E exp
{
iλ∗(X,Y )

}
= exp

{
iλ∗xEX− 1

2
λ∗x cov(X)λx

}
exp

{
iλ∗yEY − 1

2
λ∗y cov(Y )λy

}
,

which verifies the second claim.
Recall that X − Ê(X|Y ) is orthogonal to Y , and thus by (2), they are also

independent. Then

E
(
exp

{
iλ∗x
(
X − Ê(X|Y )

)}∣∣Y ) = Eexp
{
iλ∗x
(
X − Ê(X|Y )

)}
and on the other hand

E
(
exp

{
iλ∗x
(
X − Ê(X|Y )

)}∣∣Y ) = exp
{
− iλ∗xÊ(X|Y )

}
E
(
exp

{
iλ∗xX

}∣∣Y )
and so

E
(
exp

{
iλ∗xX

}∣∣Y ) = exp
{
iλ∗xÊ(X|Y )

}
Eexp

{
iλ∗x
(
X − Ê(X|Y )

)}
.

Since X − Ê(X|Y ) is in the linear span of (X,Y ), the latter term equals

exp
{
iλ∗xE(X − Ê(X|Y ))− 1

2
λ∗x cov

(
X − Ê(X|Y )

)
λx

}
,

and the third claim follows, since E(X−Ê(X|Y )) = 0 and cov
(
X−Ê(X|Y )

)
equals

(3.26). �

Consider now the Kalman-Bucy linear model (2.13) and (2.14) (on page 29),
where the sequences ξ and ε are Gaussian, as well as the initial condition (X0, Y0).
Then the processes (X,Y ) are Gaussian (i.e. any finite dimensional distribution
is Gaussian) and by Lemma 3.15, the conditional distribution of Xj given FY

j is
Gaussian too. Moreover its parameters - the mean and the covariance are governed
by the Kalman-Bucy filter equations from Theorem 2.5.

19in other notations E(X|FY ) = Ê(X|LY )
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Remark 3.17. The recursions of Theorem 2.5 can be obtained via the nonlinear
filtering equation (3.14), using certain properties of the Gaussian densities. Note
however that guessing the Gaussian solution to (3.14) would not be easy !

In particular for any measurable f , such that E|f(Xj)| <∞ (the scalar case is
considered for simplicity)

E
(
f(Xj)|FY

j

)
=

∫
R
f(u)

1√
2πPj

exp

{
− (u− X̂j)

2

2Pj

}
du,

where Pj nd X̂j are generated by the Kalman-Bucy equations. In Exercise 24 an
important generalization of the Kalman-Bucy filter is considered. More models, for
which finite dimensional filter exists are known, but their practical applicability is
usually limited.

Exercises

(1) Verify the properties of the conditional expectations on page 40
(2) Prove that pre-images of Borel sets of R under a measurable function

(random variable) is a σ-algebra
(3) Prove (3.6) (use monotone convergence theorem - see Appendix).
(4) Obtain the formula (3.3) by means of (3.11).
(5) Verify the claim of Remark 3.7.
(6) Explore the definition of the Markov process on page 43: argue the exis-

tence, etc. How such process can be generated, given say a source of i.i.d.
random variables with uniform distribution ?

(7) Is Y , defined in (3.13) a Markov process? Is the pair (Xj , Yj) a (two
dimensional) Markov process?

(8) Show that P
(
ĚLj(X(ω̌), Y

)
= 0
)
= 0 (Lj(X,Y ) is defined in (3.19)).

(9) Complete the proof of Theorem 3.9 (i.e. verify (3.15)).
(10) Derive (3.14) and (3.15), using the orthogonality property of the condi-

tional expectation (similarly to derivation of (3.3)).
(11) Show that (3.23) and (3.24) imply (3.14).
(12) Derive the nonlinear filtering equations when Y is defined with ”delay”:

P(Yj ∈ B|FX
j−1,F

Y
j−1) =

∫
B

γ(Xj−1; du), P− a.s

(13) Discuss the changes, which have to be introduced into (3.14), when X and
Y take values in Rm and Rn respectively (the multivariate case)

(14) Discuss the changes, which have to be introduced into (3.14), when the
Markov kernels Λ and γ are allowed to depend on j (time dependent case)
and FY

j−1 (dependence on the past observations).
(15) Show that if the transition matrix Λ of the finite state chain X is q-

primitive, i.e. the matrix Λq has all positive entries for some integer
q ≥ 1, then the limits limj→∞ P

(
Xj = aℓ

)
= µℓ exist, are positive for

all aℓ ∈ S and independent of the initial distribution (such chain is called
ergodic).
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(16) Find the filtering recursion for the signal/observation model

Xj = g(Xj−1) + εj , j ≥ 1

Yj = f(Xj) + ξj

subject to a random initial condition X0 (and Y0 ≡ 0), independent of
ε and ξ. Assume that g : R 7→ R and f : R 7→ R are measurable func-
tions, such that E|g(Xj−1)| < ∞ and E|f(Xj)| < ∞ for any j ≥ 0. The
sequences ε = (εj)j≥1 and ξ = (ξj)j≥1 are independent and i.i.d., such
that ε1 and ξ1 have densities p(u) and q(u) with respect to the Lebesgue
measure on B(R).

(17) Let X be a Markov chain as in Section 4.1 and Yj = h(Xj) + ξj , j ≥ 1,
where ξ = (ξj)j≥0 is an i.i.d. sequence. Assume that ξ1 has probabil-
ity density f(u) (with respect to the Lebesgue measure). Write down
the equations (3.25) in componentwise notation. Simulate the filter with
MATLAB.

(18) Show that the filtering process πj from the previous problem is Markov.
(19) Under the setting of Section 4.1, denote by Yj the family of FY

j - measur-
able random variables with values in S (detectors which guess the current
symbol ofXj , given the observation of {Y1, ..., Yj}). For a random variable
ηj ∈ Yj , let Pd denote the detection error:

Pd = P
(
ηj ̸= Xj

)
.

Show that the optimal detector, minimizing the detection error in the
class Yj is given by

η̂j = argmaxaℓ∈S πj(ℓ).

Find (an implicit) expression for the minimal detection error.
(20) A random switch θj ∈ {0, 1}, j ≥ 0 is a discrete-time two-state Markov

chain with transition matrix:

Λ =

[
λ1 1− λ1

1− λ2 λ2

]
.

Assume that θ0 = 1.
A counter ξj , counts arrivals (of e.g. particles) from two indepen-

dent sources with different intensities α and β. The counter is connected
according to the state of the switch θj to one source or another, so that:

ξj = ξj−1 + 1(θj = 1)εαj + 1(θj = 0)εβj , j = 1, 2, ...

subject ξ0 = 0. Here β and α are constants from the interval (0, 1) and
εγj ∈ {0, 1} stands for an i.i.d. sequence with P{εγj = 1} = γ (0 < γ < 1).

(a) Find the optimal estimate of the switch state, given the counter data

up to the current moment, i.e. derive the recursion for πj = E(θj |Fξ
j ).

(b) Study the behavior of the filter in the limit cases:
(i) α = 1 and β = 0 (simultaneously).
(ii) λ1 = 1 and λ2 = 0 (and vice versa).
(iii) λ1 = λ2 = 1

(21) Let θj be the number of times, a finite state Markov chain X visited
(”occupied”) the state a1 (or any other fixed state) up to time j. Find
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the recursion for calculation of the optimal estimate of the occupation
time E(θj |FY

j ), where Y is defined as in Section 4.1.
(a) Let Ij be the vector of indicators 1{Xj=ai}, i = 1, ..., d and define

Zj := θjIj . Find the expression for Z̄j|j−1 := E(Zj |FY
j−1) in terms of

Z̄j−1 = E(Zj−1|FY
j−1) and πj|j−1 = Λ∗πj .

(b) Find the expression of Z̄j in terms of Z̄j|j−1 and thus ”close” the

recursion for Z̄j .
(c) How E(θj |FY

j ) is recovered from Z̄j?
(22) Let τj be the number of transitions from state a1 to state a2 (or any other

fixed pair of states), a finite state Markov chain X made on the time
interval [1, j]. Find the finite dimensional filter for E(τj |FY

j ). Hint: use
the approach suggested in the previous problem.

(23) Check the claim of Remark 3.14.
(24) Consider the signal/observation model (Xj , Yj)j≥0:

Xj = a0(Y
j−1
0 ) + a1(Y

j−1
0 )Xj−1 + bεj , j = 1, 2, ...

Yj = A0(Y
j−1
0 ) +A1(Y

j−1
0 )Xj−1 +Bξj

where b and B are constants and Ai(Y
j−1
0 ) and ai(Y

j−1
0 ), i = 0, 1 are some

functionals of the vector {Y0, Y1, ..., Yj−1}. ε = (εj)j≥1 and ξ = (ξj)j≥1

are independent i.i.d. standard Gaussian random sequences. The initial
condition (X0, Y0) is a standard Gaussian vector with unit covariance
matrix, independent of ε and ξ.
(a) Is the pair of processes (Xj , Yj)j≥0 necessarily Gaussian ? Give a

proof or a counterexample.

(b) Find the recursion for X̂j = E(Xj |FY
j ) and Pj = E

(
(Xj − X̂j)

2|FY
j

)
.

Is the obtained filter linear w.r.t. observations ? Does the error Pj

depend on the observations ?

Hint: prove first that Xj is Gaussian, conditioned on FY
j .

Remark 3.18. The filtering recursion in this case is sometimes re-
ferred as conditionally Gaussian filter. It plays an important role
in control theory, where the coefficients usually depend on the past
observations.

(c) Verify that in the case of ai(Y
j−1
0 ) ≡ ai and Ai(Y

j−1
0 ) ≡ Ai, i = 0, 1

(ai and Ai constants) your solution coincides with the Kalman-Bucy
filter.

(25) Consider the recursion

Xj = aXj−1 + εj , j ≥ 1

subject to a standard Gaussian random variable X0 and where ε is a
Gaussian i.i.d. sequence, independent of X0. Assuming that the param-
eter a is a Gaussian random variable independent of ε and X0, derive a
recursion for E(a|FX

j ) and for the square error

Pj = E
((
a− E(a|FX

j )
)2∣∣FX

j

)
.

Is the recursion for E(a|FX
j ) linear ? Does Pj converge ? If yes, to which

limit and in which sense? Hint: use the results of the previous exercise.
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(26) Consider a signal/observation pair (θ, ξj)j≥1, where θ is a random variable
distributed uniformly on [0, 1] and (ξj) is a sequence generated by:

ξj = θUj

where (Uj)j≥1 is a sequence of i.i.d. random variables with uniform dis-
tribution on [0, 1]. θ and U are independent.

(a) Derive the Kalman-Bucy filter for θ̂j = Ê(θ|ξj1).
(b) Find the corresponding mean square error Pj = E(θ−θ̂j)2. Show that

it converges to zero as j → ∞ and determine the rate of convergence
20

(c) Consider the recursive filtering estimate (θ̃j)j≥0

θ̃j = max(θ̃j−1, ξj), θ̃0 = 0

Find the corresponding mean square error, Qj = E(θ − θ̃j)
2.

(d) Show that Qj converges to zero and find the rate of convergence.
Does this filter give better accuracy, compared to Kalman-Bucy filter,
uniformly in j ? Asymptotically in j → ∞?

(e) Verify whether θ̃j is the optimal in the mean square sense filtering

estimate. If not, find the optimal estimate θ̄j = E(θ|Fξ
j ).

20i.e. find a sequence rj , such that limj→∞ rjPj exists and positive



CHAPTER 4

The white noise in continuous time

A close look at the derivation of nonlinear filtering recursions reveals that one
of the crucial assumptions is independence of the observation noise on the past.
The model (3.13) is in fact a generalization of the following ”additive white noise”
observation scenario

Yj = h(Xj) + ξj , j ≥ 0 (4.1)

where h is a measurable function and ξ is an i.i.d. sequence. As was mentioned in
the introduction, the term ”white noise” stems from the fact that power spectral
density of the sequence ξ (when Eξ21 < ∞), defined as the Fourier transform of
the correlation sequence R(n) = Eξ0ξn, is constant. In the continuous time case
similar definition would be meaningless both for mathematical and physical reasons:
the sample pathes of such process would be extremely irregular (e.g. not even
continuous in any point) and its variance is infinite. It turns out that overcoming
this difficulty is not an easy mathematical task. It is accomplished in several steps

i. Introduce a continuous time process with independent increments. The
motivation is that a formal derivative of such process is a ”white noise” (recall the
discussion on page 10). It turns out that such a process can be constructed (the
Wiener process), but it is not differentiable in any reasonable sense. At this point
the hope for real ”white noise” is abandoned and instead of considering problems
involving differentials (e.g. differential equations, etc.), their integral analogues are
considered.

ii. This naturally leads to considering integration with respect to the Wiener
process. It turns out however that the Wiener process has irregular trajectories,
so that all the classical integration approaches (e.g. Stieltjes, Lebesgue, etc.) fail.
However integration can be carried out if the family of integrands is chosen in a
special way. Specifically we will use the stochastic integral introduced by K.Itô

iii. After introducing the integral, one is led to establish the rules to manipulate
the new object: e.g. the change of integration variable, chain rule, etc. Surprisingly
(or not!) the Itô integral have properties, dramatically different from the classical
integration. The particularly useful tool in, what is called by now, the stochastic
calculus, is the Itô formula.

iv. Once there is a new calculus, the ultimate goal is accomplished: the sto-
chastic differential equations are introduced. The term “differential” is in fact
misleading, though customary: actually the integral equations involving usual Rie-
mann integrals and Itô integrals are considered. It turns out that besides strong
solutions (roughly speaking analogous to the usual solutions of ODE), one may
consider weak solutions, which have no analogue in classical ODE’s. We will be
concerned mainly with the first kind of solutions, though weak solutions play an
important role in filtering in particular.

55
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Remark 4.1. The introductory scope of these lectures doesn’t include many
important concepts and details from the vast theory of random processes in contin-
uous time. The reader may and should consult basic books in this area for deeper
understanding. The author’s choice was and still is: the classic J.Doob’s book [5]
and the modern [39] for general concepts of stochastic processes in continuous time,
the book [18] is a good starting point for further study of the Brownian motion and
stochastic calculus, the first volume of [21] is a confined but very accessible coverage
of stochastic Itô calculus and its applications (collected in the second volume).

1. The Wiener process

The main building block of the white noise theory is the Wiener process (or
mathematical Brownian motion), which is defined (on some probability space (Ω,
F,P)) as a stochastic process W = (Wt(ω))t∈R+ , satisfying the properties

(1) W0(ω) = 0, P− a.s.
(2) the trajectories of W are continuous functions
(3) the increments ofW are independent Gaussian random variables with zero

mean and E(Wt −Ws)
2 = t− s, t ≥ s.

1.1. Construction. The existence of such process is not at all clear. There
are many constructions of W (see e.g. [18]) of which we choose the one due to
P.Levy (Section 2.3 in [18])

Theorem 4.2. The Wiener process W = (Wt)t∈[0,1] exists.

Proof. Let I(n) denote the odd integers from {0, 1, ..., 2n}. Define the Haar
functions as H0

1 (t) = 1, t ∈ [0, 1] and n ≥ 1, k ∈ I(n)

Hn
k (t) =


2−(n−1)/2, k−1

2n ≤ t < k
2n

−2−(n−1)/2, k
2n ≤ t < k+1

2n

0 otherwise

.

The Schauder functions are

Sn
k =

∫ t

0

Hn
k (s)ds,

which do not overlap for different k, when n is fixed, and have a ”tent” like shape.
Let ξnj , j ∈ I(n), n = 1, ... be an array of i.i.d. standard Gaussian random

variables. Introduce the sequence of random processes, n ≥ 0

Wn
t =

n∑
m=0

∑
k∈I(m)

ξmk S
m
k (t), t ∈ [0, 1], (4.2)

Note that Wn
t has continuous trajectories for all n. If the sequence Wn

t converges
P-a.s. uniformly in t ∈ [0, 1], then the limit process has continuous trajectories as
required in axiom 2.

Let’s verify the convergence of the series

n∑
m=1

∑
j∈I(m)

∣∣ξmj ∣∣Sm
j (t) ≤

n∑
m=1

max
j∈I(m)

∣∣ξmj ∣∣ ∑
j∈I(m)

Sm
j (t) ≤

n∑
m=1

2−(m−1) max
j≤2m

∣∣ξmj ∣∣ (4.3)
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(recall that Sm
j (t) do not overlap for a fixed m and different j). Since

P
(
|ξmj | ≥ x

)
=

2√
2π

∫ ∞

x

e−u2/2du ≤
√

2

π

∫ ∞

x

u

x
e−u2/2du =

√
2

π

e−x2/2

x

for m ≥ 1

P
(
max
j≤2m

∣∣ξmj ∣∣ ≥ m
)
= P

( ∪
j≤2m

{
|ξmj | > m

})
≤ 2mP

(
|ξmj | ≥ m

)
≤
√

2

π

2me−m2/2

m
.

Since
∑∞

m=1 2
me−m2/2m−1 <∞, by Borel-Cantelli Lemma

P
(
max
j≤2m

∣∣ξmj ∣∣ ≥ m, i.o.
)
= 0.

In other words, there is a set Ω′ of full P-measure and a random integer n(ω), such
that maxj≤2m

∣∣ξmj ∣∣ ≤ m for all m ≥ n(ω) for all ω ∈ Ω′. Then the series in (4.3)
converge on Ω′ since

n∑
m=n(ω)

2−m max
j≤2m

∣∣ξmj ∣∣ ≤ n∑
m=n(ω)

2−mm <∞.

So the processes Wn
t converge P-a.s. uniformly in t to a continuous process Wt. It

is left to verify the axiom 3. The Haar basis forms a complete orthonormal system
in the Hilbert space L2[0, 1] with the scalar product ⟨g, f⟩ =

∫
[0,1]

f(s)g(s)ds and

so by Parseval equality

⟨g, f⟩ =
∞∑

n=0

∑
k∈I(n)

⟨g,Hn
k ⟩⟨f,Hn

k ⟩.

For gu = 1(u ≤ t) and f(u) = 1(u ≤ s), the latter implies

s ∧ t =
∞∑

n=0

∑
k∈I(n)

Sn
k (t)S

n
k (s).
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Now let λj , j = 1, ..., n be real numbers and fix n distinct times t1 < ... < tn.
Then (with λn+1 = 0)

E exp
(
− i

n∑
j=1

(λj+1 − λj)W
ℓ
tj

)
=

Eexp
(
− i

n∑
j=1

(λj+1 − λj)

ℓ∑
m=0

∑
k∈I(m)

ξmk S
m
k (tj)

)
=

Eexp
(
−

ℓ∑
m=0

∑
k∈I(m)

ξmk

n∑
j=1

i(λj+1 − λj)S
m
k (tj)

)
=

ℓ∏
m=0

∏
k∈I(m)

Eexp
(
− ξmk

n∑
j=1

i(λj+1 − λj)S
m
k (tj)

)
=

ℓ∏
m=0

∏
k∈I(m)

exp
(
− 1

2

{ n∑
j=1

(λj+1 − λj)S
m
k (tj)

}2)
=

exp
(
− 1

2

ℓ∑
m=0

∑
k∈I(m)

{ n∑
j=1

(λj+1 − λj)S
m
k (tj)

}2)
=

exp
(
− 1

2

n∑
j=1

n∑
i=1

(λj+1 − λj)(λi+1 − λi)

ℓ∑
m=0

∑
k∈I(m)

Sm
k (tj)S

m
k (ti)

)
ℓ→∞−−−→

exp
(
− 1

2

n∑
j=1

n∑
i=1

(λj+1 − λj)(λi+1 − λi)(tj ∧ ti)
)

Then

E exp
(
i

n∑
j=1

λj
(
Wtj −Wtj−1

))
= Eexp

(
− i

n∑
j=1

(λj+1 − λj)Wtj

)
=

exp
(
− 1

2

n∑
j=1

n∑
i=1

(λj+1 − λj)(λi+1 − λi)(tj ∧ ti)
)
=

exp
(
−

n−1∑
j=1

n∑
i=j+1

(λj+1 − λj)(λi+1 − λi)(tj ∧ ti)−
1

2

n∑
j

(λj+1 − λj)
2tj

)
=

exp
(
−

n−1∑
j=1

(λj+1 − λj)tj

n∑
i=j+1

(λi+1 − λi)−
1

2

n∑
j

(λj+1 − λj)
2tj

)
=

exp
( n−1∑

j=1

(λj+1 − λj)tjλj+1 −
1

2

n∑
j

(λj+1 − λj)
2tj

)
=

exp
( n−1∑

j=1

tj

{
(λj+1 − λj)λj+1 −

1

2
(λj+1 − λj)

2
}
− 1

2
λ2ntn

)
=
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exp
(1
2

n−1∑
j=1

tj
{
λ2j+1 − λ2j

}
− 1

2
λ2ntn

)
= exp

(
− 1

2

n∑
j=1

λ2j(tj − tj−1)
)
=

n∏
j=1

exp
(
− 1

2
λ2j (tj − tj−1)

)
,

which verifies axiom 2. �

Remark 4.3. The Wiener process on [0,∞) can be constructed by patching
the Wiener processes on the intervals [j, j + 1], j = 0, 1, ....

Remark 4.4. Though Gaussian distribution of the i.i.d. random variables in
this proof plays crucial role, the Gaussian property of the limit W is ”universal”:
it turns out that any continuous time process with independent increments (a mar-
tingale!), continuous trajectories and variance t is the Wiener process. Roughly
speaking, this suggests that the ”white noise”, which originates from a random
process with these properties is necessarily Gaussian! More exactly

Theorem 4.5. (P. Levy) Let Bt be a continuous process with EBt ≡ 0, t ≥ 0
and

E
(
B2

t − t|FB
s

)
= B2

s − s, t ≥ s ≥ 0.

Then Bt is a Wiener process.

Remark 4.6. Sometimes it is convenient to relate the Wiener process to some
filtration Ft, by extending the definition in the following way: Wt is the Wiener
process with respect to a filtration Ft, if W has continuous pathes, starts from zero
and for any t ≥ s ≥ 0, Wt −Ws is a Gaussian random variable, independent of Fs,
with zero mean and variance (t − s). The previous definition reduces to the case
Ft ≡ FW

t = {Ws, s ≤ t}.

1.2. Nondifferentiability of the pathes. The properties of the trajectories
of W are really amazing and up to now do not cease to attract attention of math-
ematicians. We will verify a few of them, which are crucial to understanding the
origins of stochastic calculus.

For a function f : [0, 1] 7→ R, denote by D± the upper left and right Deni
derivatives at t:

D±f(t) = lim
h→0±

f(t+ h)− f(t)

h

and by D±(t) the lower left and right Deni derivatives at t:

D±f(t) = lim
h→0±

f(t+ h)− f(t)

h
.

The function is differentiable at t from the right ifD+f(t) and D+f(t) are finite and
coincide. Similarly left differentiability is defined by means of D−f(t) and D−f(t).
If all the Deni derivatives are equal, f is differentiable at t. Differentiability at t = 0
and t = 1 is defined as right and left differentiability respectively.

Theorem 4.7. (Paley, Wiener and Zygmund, 1933) The Wiener process has
nowhere differentiable trajectories, more precisely

P
(
ω : for each t < 1, either D+Wt = ∞ or D+Wt = −∞

)
= 1.
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Proof. For fixed j, k ≥ 0, define the sets

Ajk =
∪

t∈[0,1]

∩
h∈[0,1/k]

{
ω :
∣∣Wt+h −Wt

∣∣ ≤ jh
}
.

Clearly {
ω : −∞ < D+Wt ≤ D+Wt <∞

}
⊆
∪
j≥1

∪
k≥1

Ajk

and so to verify the claim, it would be enough to show that P
(
Ajk

)
= 0 for any j, k.

Fix a trajectory in the set Ajk. For this trajectory there exists a number t ∈ [0, 1],
such that

∣∣Wt+h −Wt

∣∣ ≤ jh for any 0 ≤ h ≤ 1/k. Fix an integer n ≥ 4k and let
1 ≤ i ≤ n be such that (i− 1)/n ≤ t ≤ i/n. Then we have∣∣W(i+1)/n −Wi/n

∣∣ ≤ ∣∣W(i+1)/n −Wt

∣∣+ ∣∣Wt −Wi/n

∣∣ ≤ 2j

n
+
j

n
=

3j

n∣∣W(i+2)/n −W(i+1)/n

∣∣ ≤ ∣∣W(i+2)/n −Wt

∣∣+ ∣∣Wt −W(i+1)/n

∣∣ ≤ 3j

n
+

2j

n
=

5j

n∣∣W(i+3)/n −W(i+2)/n

∣∣ ≤ ∣∣W(i+3)/n −Wt

∣∣+ ∣∣Wt −W(i+2)/n

∣∣ ≤ 4j

n
+

3j

n
=

7j

n
.

Then Ajk ⊆
∪n

i=1 C
(n)
i with

C
(n)
i =

3∩
r=1

{∣∣W(i+r)/n −W(i+r−1)/n

∣∣ ≤ (2r + 1)j

n

}
.

hold for any n ≥ 4k or in other words

Ajk ⊆
∩

n≥4k

n∪
i=1

C
(n)
i := C.

Note that since W(i+r)/n − W(i+r−1)/n are independent and Gaussian with zero

mean and variance 1/
√
n,

P
(
C

(n)
i

)
≤ 3 · 5 · 7j3

n3/2
,

where the inequality P(|ξ| ≤ ε) ≤ ε for a standard Gaussian r.v. ξ, have been used.

Then P(Ajk) ≤ P (C) ≤ infn≥4k P(∪n
i=1C

(n)
i ) = 0, where the latter holds since

P
(
∪n
i=1 C

(n)
i

)
≤

n∑
i=1

P(C
(n)
i ) =

105j3

n1/2
n→∞−−−−→ 0.

�

Recall that the p-variation of the function f : [0, 1] 7→ R on the partition
Πn = {ti}, 0 = t0 < ... < tn+1 = 1 is

p∨
Πn

f(t) :=
∑

ti+1≤t

∣∣fti+1
− fti

∣∣p, t ∈ [0, 1].

The function f is said to be of finite p-variation on [0, 1] if the limit is finite

p∨
f(t) := sup

Πn,n∈Z

n∑
ti+1≤t

∣∣fti+1
− fti

∣∣p, t ∈ [0, 1].
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Theorem 4.8. The quadratic variation of the Wiener process trajectories equals
t in the sense, that

2∨
W (t) = lim

|Πn|→0

2∨
Πn

W (t) = t,

where1 the limit in L2 is understood2.

Proof. Use the Gaussian properties of the Wiener process

E
( ∑

ti+1≤t

(
Wti+1 −Wti

)2 − t
)2

= E
( ∑

ti+1≤t

(
Wti+1 −Wti

)2 − (ti+1 − ti)
)2

=

∑
ti+1≤t

E
((
Wti+1 −Wti

)2 − (ti+1 − ti)
)2

=
∑

ti+1≤t

2(ti+1 − ti)
2 ≤ 2

∣∣Πn
∣∣t n→∞−−−−→ 0.

�

Theorem 4.9. The Wiener process has trajectories with infinite variation, in
particular

P
(
lim
n→0

∑
0≤i≤n

∣∣Wi/n −W(i−1)/n

∣∣ = ∞
)
= 1.

Proof. The random variables
(
Wi/n −W(i−1)/n

)√
n form an i.i.d. standard

Gaussian sequence, so that by the law of large numbers

P

(
lim

n→∞

1

n

n∑
i=1

∣∣Wi/n −W(i−1)/n

∣∣√n = E|W1|

)
= 1.

Since E|W1| > 0, this implies in particular

P

(
n∑

i=1

∣∣Wi/n −W(i−1)/n

∣∣ ≥ n1/2−ε, eventually

)
= 1.

for any ε > 0. �

2. The Itô Stochastic Integral

Recall the following fact from the classical analysis Vol.3, Ch. 15, §4-5 in [9].

Theorem 4.10. (Stieltjes integral) Let3 f : [0, 1] 7→ R be a uniformly continu-
ous function and gt : [0, 1] 7→ R be a function of finite variation. Let 0 = t0 < t1 <
... < tn = 1 be a sequence of partitions and denote δn = maxj |tj − tj−1|. Then the
limit ∫ 1

0

fsdgs := lim
δn→0

n∑
j=1

f(t∗j−1)
(
gtj − gtj−1

)
(4.4)

exists and is unique for any choice of points t∗j−1 ∈ [tj−1, tj ], j = 1, ..., n. It is
called the Stieltjes integral of ft with respect to gt.

1|Πn| = max0≤i≤n+1 |ti+1 − ti| is the size of the partition.
2Stronger convergence is possible if the partitions sizes are allowed to decrease fast enough.
3For the sake of notation simplicity, the dependence of the partition {tj} on n is always

assumed implicitly.
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Proof. Assume first that g does not decrease. Define the Darboux sums

sn =
∑
j=1

mj−1

(
gtj − gtj−1

)
, Sn =

∑
j=1

Mj−1

(
gtj − gtj−1

)
where mj−1 = mins∈[tj−1,tj ] fs and Mj−1 = maxs∈[tj−1,tj ] fs. It is easy to see that
Sn (sn) does not increase (decrease) with n and moreover Sn ≥ sm for anym,n ≥ 1.
Then the limit in (4.4) exists and is unique if I∗ := infn S

n = supn s
n =: I∗. The

latter holds if

lim
δn→∞

n∑
j=1

(Mj−1 −mj−1)
(
gtj − gtj−1

)
= 0.

If f is uniformly continuous, then for any ε > 0, one may choose δn > 0 such that
Mj −mj ≤ ε/(g1 − g0) uniformly in j. Then

n∑
j=1

(Mj−1 −mj−1)
(
gtj − gtj−1

)
≤ ε,

and the claim of the Theorem holds for nondecreasing g. The general case fol-
lows from the fact that g with finite variation can be decomposed into sum of a
nonincreasing and nondecreasing functions. �

The Wiener process has infinite variation and hence it is not clear how Stieltjes
integral with respect to its trajectories can be constructed. This is clarified in the
following example:

Example 4.11. Suppose we would like to define the integral
∫ t

0
WsdWs as the

limit n→ ∞ of the sums
[tn]∑
i=0

Ws∗i

(
Wsi+1 −Wsi

)
, t ∈ [0, 1]

where si = i/n and s∗i is a point from interval [si−1, si] for each i. Consider the
two choices: s∗i = si and s

∗
i = (si+1 + si)/2, which lead to

Int =

[tn]∑
i=0

Wsi

(
Wsi+1 −Wsi

)
and

Jn
t =

[tn]∑
i=0

W(si+si+1)/2

(
Wsi+1 −Wsi

)
respectively. Clearly EInt = 0 for all t and n ≥ 1. On the other hand

EJn
t =

[tn]∑
i=0

EW(si+si+1)/2

(
Wsi+1 −Wsi

)
=

[tn]∑
i=0

(
(si + si+1)/2− si

)
=

1

2
[tn]/n

n→∞−−−−→ t/2.

It is not hard to see that the limits in probability It = limn→∞ Int and Jt =
limn→∞ Jn

t exist and satisfy EIt = 0 and EJt = t/2 for all t ∈ [0, 1]. So one does
not obtain the same limit for different partitions as promised in Theorem 4.10.
This is a manifestation of the trajectories irregularity of W : if their variation were
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finite the same limit would be obtained! Let us note that both examples are in
fact the prototypes of the stochastic integrals in the sense of Itô and Stratonovich
respectively. See Exercise 7 for further exploration. �

2.1. Construction. The Itô integral will be defined in this course4 under the
following setup. Let (Ω,F,P) be a complete5 probability space with the increasing
family of sub-σ-algebras (filtration) Ft ⊆ F. Sometimes (Ω,F, (Ft)t≥0,P) is referred
as filtered probability space or stochastic basis.

Definition 4.12. A random process X is said to be adapted to filtration Ft if
for each fixed t ≥ 0, the random variable Xt is Ft-measurable.

From here on all the random processes are assumed to be adapted to Ft, if
not stated otherwise. For example the Wiener process Wt is trivially adapted to
its natural filtration FW

t = σ{Ws, s ≤ t}, but is also assumed to be adapted to
Ft. This allows to define the integral more generally and is of no limitation, since
Ft can be usually defined to be the least filtration, to which all the processes are

adapted. For example it allows to define integrals like
∫ t

0
VtdWt where W and V

are independent Wiener processes: V is not adapted to FW
t , but both W and V

are adapted to Ft := FV
t ∨ FW

t .
Construction of the Itô integral is based on two main ideas: (1) to restrict the

choice of the sampling points of the integrand in the prelimit sums to the beginning
of the sub-intervals of the partition and (2) to consider integrands for which this
restriction leads to the unique limit.

Definition 4.13. The process Xt(ω) is said to belong to the family H2
[0,T ] if

(1) the mapping (t, ω) 7→ Xt(ω) is measurable with respect to B([0, T ]) × F

(as a function of both arguments)
(2) Xt(ω) is Ft adapted

(3) E
∫ T

0
X2

s (ω)ds <∞
Remark 4.14. The stochastic integral can be constructed for a more general

class of integrands, satisfying only

P

(∫ T

0

X2
t dt <∞

)
= 1,

instead of (3). In what follows the stochastic integral will be used with the inte-
grands satisfying the stronger condition, if not specified otherwise. It turns out
that the properties of the stochastic integral may crucially depend on the integrand
type - this point is demonstrated in Example 4.25 below.

Generally stochastic integration can be defined with respect to processes, more
general than the Wiener process: the martingales. For further exploration see the
introductory text [4] and [22] for a more advanced treatment.

Definition 4.15. The process Xt is H
2
[0,T ]-simple (or just simple) if it belongs

to H2
[0,T ] and has the form Xn

t =
∑n

j=1 ξj−11[tj−1,tj) for some fixed partition 0 =

t0 ≤ t1 ≤ ... ≤ tn = T and random variables ξj .

4The text [25] is followed here.
5standard technical requirement which is usually imposed on probability spaces: it means

that F contains all the sets A, such that A ⊆ A ⊆ A for some measurable sets A and A (on which

P is defined) with P(A) = P(A). Then P(A) = 0 is set.
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Assume that FW
t ⊆ Ft and define the Itô integral for a simple process Xn

t as

I(Xn) :=

∫ T

0

Xn
t dWt :=

n∑
j=1

ξj−1

(
Wtj −Wtj−1

)
.

Then6

EI2(Xn) =E
( n∑

j=1

ξj−1

(
Wtj −Wtj−1

))2
=

n∑
j=1

Eξ2j−1

(
Wtj −Wtj−1

)2
+

2
n−1∑
i=1

∑
j<i

Eξi−1ξj−1

(
Wtj −Wtj−1

)(
Wti −Wti−1

)
=

n∑
j=1

Eξ2j−1E
((
Wtj −Wtj−1

)2∣∣Ftj−1

)
+

2
n−1∑
i=1

∑
j<i

Eξi−1ξj−1

(
Wtj −Wtj−1

)(
E
(
Wti −Wti−1

)∣∣Fti−1

)
=

n∑
j=1

Eξ2j−1(tj − tj−1) =

∫ T

0

E
(
Xn

t

)2
dt.

(4.5)

The latter property is called the Itô isometry and is the main feature in the con-
struction of the stochastic integral.

Lemma 4.16. Let {tj} be a sequence of partitions on [0, T ], such that δn =
maxj |tj − tj−1| → 0 , as n→ 0. Then

1. for any continuous7 and bounded H2
[0,T ] process X

bc
t , there is a sequence of

simple H2
[0,T ] processes X

ℓ
t , ℓ ≥ 0, such that

lim
ℓ→∞

∫ T

0

E
(
Xbc

t −Xℓ
t

)2
dt = 0 (4.6)

2. for any bounded H2
[0,T ] process X

b
t there is a sequence of continuous H2

[0,T ]

processes Xc,m
t , m ≥ 1, such that

lim
m→∞

∫ T

0

E
(
Xb

t −Xc,m
t

)2
dt = 0 (4.7)

3. for any H2
[0,T ] process Xt there is a sequence of bounded H2

[0,T ] processes

Xb,n
t , n ≥ 1 such that

lim
n→∞

∫ T

0

E
(
Xt −Xb,n

t

)2
dt = 0. (4.8)

6It can be shown that the filtration FW
t is continuous, i.e. FW

t+ :=
∩

ε>0 F
W
t+ε and FW

t− :=∨
ε>0 F

W
t−ε coincide. It is customary to assume that Ft is continuous (or at least right continuous)

as well. This and the definition of Xn
t implies that ξj−1 is Ftj−1 -measurable.

7i.e. a process with continuous trajectories
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Proof. 1. Let Xℓ
t =

∑
tj≤tX

bc
tj−1

1[tj−1,tj). Clearly Xℓ
t is a simple bounded

H2
[0,T ] process, which converges to Xbc

t uniformly in t due to its continuity. Then

(4.6) follows by dominated convergence.
2. Let ψm

t ,m ≥ 1 be a sequence of continuous functions supported on (−n−1, 0)
and satisfying

∫
R ψ

n
s ds = 1. Define

Xc,m
t =

∫ t

0

Xb
sψ

m
s−tds.

Clearly Xc,m
t are continuous H2

[0,T ] processes (since ψm
t was chosen in a ”casual”

way) and

lim
m→∞

∫ T

0

E
(
Xb

t −Xc,m
t

)2
dt = 0, P− a.s.

since convolution with ψm
s approximates the identity operator for bounded func-

tions. Again (4.7) follows by dominated convergence.
3. Fix an integer n ≥ 1 and define

Xb,n
t =

{
Xt |Xt| ≤ n

sign(Xt)n |Xt| > n
.

Clearly |Xb,n
t | ≤ |Xt| and so∫ T

0

E
(
Xb,n

t −Xt

)2
dt ≤ 2

∫ T

0

EX2
t dt <∞

and hence (4.8) follows by dominated convergence. �

Theorem 4.17. (Itô stochastic integral) For any Xt ∈ H2
[0,T ], the L2-limit∫ T

0

XsdWs := lim
δn→∞

∫ T

0

Xn
s dWs

exists and is independent of the specific sequence Xn of simple processes, approxi-
mating X in the sense ∫ T

0

E(Xs −Xn
s )

2ds
n→∞−−−−→ 0.

Proof. By Lemma 4.16 for any H2
[0,T ]-process Xt there is a sequence of simple

processes Xn
t for which I(Xn) is well defined. Note that for any n,m, Xn

t −Xm
t is

a simple H2
[0,T ]-process. Then sequence I(Xn), n ≥ 1 satisfies the Cauchy property

E
(
I(Xn)−I(Xm)

)2
= E

(∫ T

0

(Xn
t −Xm

t )dWt

)2
=

∫ T

0

E
(
Xn

t −Xm
t

)2
dt

n,m→∞−−−−−→ 0,

where the latter holds since Xn is a convergent sequence in8 L2. The existence of
the limit I(X) = limn→∞ I(Xn) follows since any Cauchy sequence converges in
L2.

The uniqueness is obtained by standard arguments. Let X
(1)
n and X

(2)
n be two

approximating sequences and let Xn denote the sequence obtained by taking X
(1)
n

for odd n and taking X
(2)
n for even n. Suppose that different limits I1(X) and

I2(X) are obtained when using X
(1)
n and X

(1)
n . Then the approximating sequence

8L2
(
Ω× [0, T ],F × B,P× λ

)
is meant here
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Xn will not converge to any limit. This however contradicts the existence of a limit
for Xn. �

Remark 4.18. Calculation of the Itô integral is possible by applying the con-
struction used in its definition - see Exercise 8. Another way is to apply the Itô
formula to be given below.

2.2. Properties. Let X and Y be H2
[0,T ]-processes, then (all ”random” equal-

ities hold P-a.s.)

(i)
∫ T

0
XtdWt =

∫ S

0
XtdWt +

∫ T

S
XtdWt, S ≤ T

(ii)
∫ T

0
(aXt + bYt)dWt = a

∫ T

0
XtdWt + b

∫ T

0
YtdWt, for constants a and b

(iii) E
∫ T

0
XtdWt = 0

(iv) E
( ∫ T

0
XtdWt

∫ S

0
YtdWt) =

∫ S∧T

0
EXtYtdt. In particular

E
(∫ T

0

XtdWt

)2
=

∫ T

0

EX2
t dt.

(v)
∫ t

0
XsdWs is Ft-adapted

(vi)
∫ t

0
XsdWs, t ∈ [0, T ] admits a continuous version9, i.e. there exists a

random process It(X), t ∈ [0, T ] with continuous trajectories, so that

P
(∫ t

0

XsdWs = It(X)
)
= 1, ∀t ∈ [0, T ].

Proof. The properties (i)-(v) are inherited from the simple functions approx-
imation. Let’s verify, say (i): take a sequence Xn → X, in the sense∫ T

0

E(Xn
t −Xt)

2dt→ 0.

Then ∫ T

0

Xn
t dWt =

∫ S

0

Xn
t dWt +

∫ T

S

Xn
t dWt

and so

E
(∫ T

0

XtdWt −
∫ S

0

XtdWt −
∫ T

S

XtdWt

)2
≤

4E
(∫ T

0

XtdWt −
∫ T

0

Xn
t dWt

)2
+ 4E

(∫ S

0

XtdWt −
∫ S

0

Xn
t dWt

)2
+

4E
(∫ T

S

XtdWt −
∫ T

S

Xn
t dWt

)2 n→∞−−−−→ 0.

9Several types of equalities between continuous time random process are usually considered.
The processes X and Y are said to be indistinguishable if

P
(
∃t ∈ [0, T ] : Xt ̸= Yt

)
= P

(
sup
t≤T

|Xt − Yt| > 0
)
= 0.

This is the strongest kind of equality, which is sometimes hard to establish. X is said to be a
version of Y if for any t ∈ [0, T ]

P(Xt ̸= Yt) = 0 (4.9)

Clearly indistinguishable processes are versions of each other. Note that if X and Y satisfy (4.9),
then their finite dimensional distributions coincide.
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The property (vi) stems from continuity of W . It’s proof relies on the fact that∫ t

0
Xn

t dWt is continuous for a fixed n ≥ 1 and that this sequence converges uniformly
in t, making the limit a continuous function of t as well (the proof uses Doob’s
inequality for martingales). �

Remark 4.19. If the assumption∫ T

0

EX2
t dt <∞

is replaced by

P

(∫ T

0

X2
t dt <∞

)
= 1,

the integral is still well defined (as mentioned before in Remark 4.14), however the
properties (iii) and (iv) may fail to hold (!) - see Example 4.25 below.

3. The Itô formula

Consider the scalar random process

Xt = X0 +

∫ t

0

as(ω)ds+

∫ t

0

bs(ω)dWs, t ≤ T, (4.10)

where at and bt are H2
[0,T ] processes and W = (Wt)t≤T is the Wiener process,

defined on a stochastic basis (Ω,F,Ft,P). A random process is an Itô process, if it
satisfies (4.10), which is usually written in a ”differential” form

dXt = at(ω)dt+ bt(ω)dWt. (4.11)

Note that this Itô differential is nothing more than a brief notation in the spirit of
classical calculus.

Let f(t, x) be a R+ ×R 7→ R function with one and two continuous derivatives
in t and x respectively. It turns out that the process ξt := f(t,Xt) admits unique
integral representation, similar to (4.10), or in other words, it is also an Itô process.

Theorem 4.20. (the Itô formula) Assume f and its partial derivatives with
respect to t and x variables f ′t, f

′
x and f ′′x are bounded and continuous, then the

process ξt = f(t,Xt) admits the Itô differential

dξt = f ′t(t,Xt)dt+ f ′x(t,Xt)atdt+
1

2
f ′′x (t,Xt)b

2
tdt+ f ′x(t,Xt)btdWt, (4.12)

subject to ξ0 = f(0, X0).

Remark 4.21. Consider the similar setting in the classical nonrandom case:
let Vt be a function of bounded variation and dXt = atdt+ btdVt, where the latter
is the Stieltjes differential. Then the differential for ξt = f(t,Xt) is obtained by the
well known chain rule

dξt = f ′t(t,Xt)dt+ f ′x(t,Xt)dXt = f ′t(t,Xt)dt+ f ′x(t,Xt)atdt+ f ′x(t,Xt)btdVt.

The major difference between the classic differentiation and (4.12) is the extra term
1
2f

′′
x (t,Xt)b

2
tdt, which is again the manifestation of trajectories irregularity of W .

This non-classic chain rule is called Itô formula and is the central tool of sto-
chastic calculus with respect to Wiener process.
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Remark 4.22. The requirements for f and its derivatives to be bounded can be
relaxed even if working under the condition, mentioned in Remark 4.14. Moreover
the second derivative in x can be discontinuous at a countable number of points.
One should be careful to make further relaxations: for example if the first derivative
has a discontinuity point, the local time process arises - see Example 4.26.

Remark 4.23. The Itô formula remains valid under condition mentioned in
Remark 4.14 (recall that the stochastic integral itself may have different properties
depending on the integrability conditions of the integrand - see Remark 4.19).

Proof. (Sketch) Let ant (ω) and b
n
t (ω) be simple H2

[0,T ] processes, approximat-

ing at and bt: ∫ T

0

E
∣∣ant − at

∣∣dt n→∞−−−−→ 0∫ T

0

E
(
bnt − bt

)2
dt

n→∞−−−−→ 0,

LetXn
t = X0+

∫ t

0
ans ds+

∫ t

0
bns dWs and suppose that (4.12) holds for ξn := f(t,Xn

t ).
Then (4.12) holds for ξt by continuity and boundedness of f and its derivatives:

E
∣∣∣f(t,Xt)− f(0, X0)−∫ t

0

(
f ′t(s,Xs) + f ′x(s,Xs)asds+

1

2
f ′′x (s,Xs)b

2
s

)
ds−

∫ t

0

f ′x(s,Xs)bsdWs

∣∣∣ ≤
E
∣∣∣f(t,Xt)− f(t,Xn

t )
∣∣∣+ ∫ T

0

E
∣∣∣f ′t(s,Xs)− f ′t(s,X

n
s )
∣∣∣ds+∫ T

0

E
∣∣∣f ′x(s,Xs)− f ′x(s,X

n
s )
∣∣∣asds+ ∫ T

0

1

2
E
∣∣∣f ′′x (s,Xs)− f ′′x (s,X

n
s )
∣∣∣b2sds+(∫ T

0

E
(
f ′x(s,Xs)− f ′x(s,X

n
s )
)2
b2sds

)1/2 n→0−−−→ 0.

So it is enough to verify (4.12), when at and bt are simple. Due to additivity of the
stochastic integral, it even suffices to consider constant a(ω) and b(ω) (such that
the Itô integral is well defined), in which case Xt = at+ bWt. Since f(t, at+ bWt)
is now a function of t and Wt, the formula (4.12) holds, if

u(t,Wt) = u(0, 0)+

∫ t

0

u′t(s,Ws)ds+

∫ t

0

u′x(s,Ws)dWs+
1

2

∫ t

0

u′′x(s,Ws)ds (4.13)

for a bounded u(t, x) with two bounded continuous derivatives. Using the Taylor
expansion for u(t, x), the telescopic sum is obtained (with ∆ti := ti − ti−1 and
∆Wi =Wti −Wti−1)

u(t,Wt) =u(0, 0) +
n∑

i=1

u′t(ti−1,Wti−1)∆ti +
n∑

i=1

u′x(ti−1,Wti−1)∆Wi+

1

2

n∑
i=1

u′′x(ti−1,Wti−1)(∆Wi)
2 +Rn

where Rn is the residual term, consisting of sums over (∆ti)
2, ∆ti∆Wi and (∆Wi)

3

with coefficients obtained by the Mean Value Theorem. Clearly the first three terms
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on the right hand side of the latter converge to the corresponding terms in (4.13).
By the same arguments, used in the proof of Theorem 4.8

E
( n∑

i=1

u′′x(ti−1,Wti−1)(∆Wi)
2 −

n∑
i=1

u′′x(ti−1,Wti−1)∆ti

)2
=

n∑
i=1

E
(
u′′x(ti−1,Wti−1)

)2(
(∆Wi)

2 −∆ti
)2 ≤

2T sup
t,x∈[0,T ]×R

|u′′x(t, x)|2 max
i

∆ti
n→∞−−−−→ 0

Similarly the residual term Rn is shown to vanish as n→ ∞. �

Example 4.24. Apply the Itô formula to W 2
t :

d(Wt)
2 = 2WtdWt + dt

or in other words

W 2
t = 2

∫ t

0

WsdWs + t.

�

Example 4.25. (Example 8 Ch. 6.2 in [21]) Let βt be a random process,
adapted to Ft and satisfying

P

(∫ 1

0

β2
t dt <∞

)
= 1. (4.14)

Then the process

φt = exp

(∫ t

0

βsdWs −
1

2

∫ t

0

β2
sds

)
is well defined and by the Itô formula, satisfies the integral identity (which is also
an example of stochastic differential equation (SDE) to be introduced in Section 5)

φt = 1 +

∫ t

0

φsβsdWs, t ∈ [0, 1].

If
∫ 1

0
Eβ2

sds <∞, then the stochastic integral has zero mean and thus Eφ1 = 1. If
however only (4.14) holds, then Eφ1 < 1 is possible, meaning that the stochastic
integral is no longer a martingale. Consider a specific βt

βt = − 2Wt

(1− t)2
1{t≤τ},

where τ = inf{t ≤ 1 : W 2
t = 1 − t}, i.e. the first time W 2

t hits the line 1 − t. The
event {τ ≤ t} is FW

t measurable (and a fortiori Ft measurable), since it can be
resolved on the basis of trajectory of W up to time t and hence βt is Ft-adapted.
Note that P(τ < 1) = 1, since

P(τ = 1) ≤ P(W1 = 0) = 0,

and so ∫ 1

0

β2
t dt =

∫ 1

0

4W 2
t

(1− t)4
1{t≤τ}dt =

∫ τ

0

4W 2
t

(1− t)4
dt <∞, P− a.s.
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By the Itô formula

d

(
W 2

t

(1− t)2

)
=

2W 2
t

(1− t)3
dt+

2Wt

(1− t)2
dWt +

1

(1− t)2
dt,

which implies∫ 1

0

βsdWs −
1

2

∫ 1

0

β2
sds = −

∫ τ

0

2Wt

(1− t)2
dWs −

∫ τ

0

2W 2
t

(1− t)4
dt =

− W 2
τ

(1− τ)2
+

∫ τ

0

2W 2
t

(1− t)3
dt+

∫ τ

0

1

(1− t)2
dt−

∫ τ

0

2W 2
t

(1− t)4
dt =

− 1

(1− τ)2
+

∫ τ

0

2W 2
t

(
1

(1− t)3
− 1

(1− t)4

)
dt+

∫ τ

0

1

(1− t)2
dt ≤

− 1

1− τ
+

∫ τ

0

1

(1− t)2
dt = −1.

Then Eφt ≤ 1/e < 1, i.e. the stochastic integral
∫ t

0
φsβsdWs has nonzero mean! �

Example 4.26. (The Tanaka formula and the local time) Let ε > 0 and

fε(x) = |x|1{|x|≥ε} +
1

2
(ε+

x2

ε
)1{|x|<ε}.

Since fε(x) is twice differentiable with the second derivative discontinuous at two
points x = ±ε, the Itô formula still applies and gives

fε(Wt) =

∫ t

0

f ′ε(Ws)dWs +
1

2

∫ t

0

f ′′ε (Ws)ds =∫ t

0

sign(Ws)1{|Ws|≥ε}dWs +

∫ t

0

ε−1Ws1{|Ws|<ε}dWs+

1

2ε

∫ t

0

1{|Ws|≤ε}ds

Note that

E

(∫ t

0

ε−1Ws1{|Ws|<ε}dWs

)2

=

∫ t

0

ε−2EW 2
s 1{|Ws|<ε}ds ≤∫ t

0

ε−2ε2E1{|Ws|<ε}ds =

∫ t

0

P(|Ws| < ε)ds
ε→0−−−→ 0.

Hence the local time process corresponding to Wt

Lt = lim
ε→0

1

2ε

∫ t

0

1{|Ws|≤ε}ds (4.15)

exists at least as L2 limit. In fact it exists in a stronger sense and moreover the
Tanaka formula holds

|Wt| =
∫ t

0

sign(Wt)dWt + Lt, (4.16)

as the preceding limit procedure hints (fε(x) → |x| for all x). By definition Lt is
the rate at which the amount of time spent by the Wiener process in the vicinity of
zero decays as it shrinks. This is another manifestation of pathes irregularity of the
Wiener process: e.g. the limit (4.15) would vanish if Wt had a countable number
of zeros on [0, T ]. �
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More examples are collected in the Exercises section. The following Theorem
gives the multivariate version of the Itô formula

Theorem 4.27. Let Xt have the Itô differential

dXt = atdt+ btdWt, t ∈ [0, T ],

where at and bt are n× 1 vector and n×m matrix of H2
[0,T ]-random processes and

Wt is a vector of m independent Wiener processes. Assume f : R+ × Rn 7→ R is
continuously differentiable in t variable and twice continuously differentiable in the
x variables. Then

df(t,Xt) =
∂

∂t
f(t,Xt)dt+

d∑
i=1

∂

∂xi
f(t,Xt)dXt+

1

2

∑
i,j

∂2

∂xi∂xj
f(t,Xt)

n∑
k=1

bt(i, k)bt(j, k)dt. (4.17)

Remark 4.28. Denote by ∇ the (row vector) gradient operator with respect
to x and let ∇btb∗t∇∗ be the second order differential operator, obtained by formal

multiplication of partial derivatives. Denote by ḟ(t, x) the partial derivative w.r.t.
time variable t. Then (4.17) can be compactly written as

df(t,Xt) = ḟ(t,Xt)dt+∇f(t,Xt)dXt +
1

2
(∇btb∗t∇∗)f(t,Xt)dt.

The vector Itô formula can be conveniently encoded into the mnemonic multiplica-
tion rules between differentials, summarized in Table 4.28, used with formal Taylor
expansion of f as demonstrated in the following example.

× 1 dt dWt(1) dWt(2)

dt dt 0 0 0
dWt(1) dWt(1) 0 dt 0
dWt(2) dWt(2) 0 0 dt

Table 1. The formal Itô differential multiplication rules

Example 4.29. Consider the two dimensional system

dXt = a1Xtdt+ b11dWt + b12dVt

dYt = a2Ytdt+ b21dWt + b22dVt.

and let rt = f(Xt, Yt). Then formally

drt =df(Xt, Yt) = fx(Xt, Yt)dXt + fy(Xt, Yt)dYt+

1

2
fxx(Xt, Yt)(dXt)

2 + fxy(Xt, Yt)dXtdYt +
1

2
fyy(Xt, Yt)(dYt)

2.

and using the rules from the table.

(dXt)
2 =

(
a1Xtdt+ b11dWt + b12dVt

)2
= b211dt+ b212dt.
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Proceeding similarly for the rest of terms, one gets

drt = fx(Xt, Yt)dXt + fy(Xt, Yt)dYt +
1

2
fxx(Xt, Yt)(b

2
11 + b212)dt+

fxy(Xt, Yt)(b11b21 + b12b22)dt+
1

2
fyy(Xt, Yt)(b

2
21 + b222)dt

Verify the answer by applying (4.17) directly. �

4. The Girsanov theorem

The following theorem, proved by I.Girsanov, plays the crucial role in stochastic
analysis and in filtering particularly

Theorem 4.30. Let βt be an Ft-adapted process, defined on (Ω,F,Ft,P) and
satisfying

P

(∫ T

0

β2
t dt <∞

)
= 1

and let

φt = exp

(∫ t

0

βsdWs −
1

2

∫ t

0

β2
sds

)
.

Assume that EφT = 1 and define the probability measure P̃ by

dP̃

dP
(ω) = φT (ω).

Then

Vt =Wt −
∫ t

0

βsds, t ∈ [0, T ]

is the Wiener process with respect to Ft under probability P̃.

Proof. (Sketch) Clearly Vt has continuous pathes and starts at zero. Thus it
is left to verify

Ẽ
(
exp{iλ(Vt − Vs)}|Fs

)
= exp

{
− 0.5λ2(t− s)

}
, t ≥ s. (4.18)

It turns out that the assumption EφT = 1 implies P(inft≤T φt = 0) = 0 and hence

also P̃(inft≤T φt = 0) = 0. Then P ∼ P̃ and

dP

dP̃
(ω) = φ−1

T (ω).

By Lemma 3.11

Ẽ
(
exp{iλ(Vt − Vs)}|Fs

)
=

E
(
exp{iλ(Vt − Vs)}φT |Fs

)
E
(
φT |Fs

) =

exp{−iλVs}
E
(
exp{iλVt}φT |Fs

)
E
(
φT |Fs

)
Moreover under the assumption EφT = 1, the process φt is a martingale, i.e. it is
Ft-adapted and E(φt|Fs) = φs. Indeed by the Itô formula φt satisfies

φt = φs +

∫ t

s

φrβtdWr =⇒ E(φt|Fs) = φs,
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where the (nontrivial!) fact E
( ∫ t

s
φrβtdWr|Fs

)
= 0 has been used. Then

Ẽ
(
exp{iλ(Vt − Vs)}|Fs

)
=

E
(
exp{iλVt}φt|Fs

)
exp{iλVs}φs

. (4.19)

By the Itô formula the process ζt := exp{iλVt}φt satisfies

dζt = iλζtdVt −
1

2
λ2ζtdt+ exp{iλVt}dφt + iλ exp{iλVt}φtβtdt =

iλζtdWt − iλζtβtdt−
1

2
λ2ζtdt+ ζtβtdWt + iλζtβtdt

which implies

ζt = ζs −
∫ t

s

1

2
λ2ζudu+

∫ t

s

ζu(iλ+ βu)dWu

and in turn

E(ζt|Fs) = ζs −
1

2
λ2
∫ t

s

E(ζu|Fs)du,

where once again the martingale property of the stochastic integral has been used.
This linear equation is explicitly solved for ζt

ζt = ζs exp
(
− 1

2
λ2(t− s)

)
and the claim (4.18) holds by (4.19). �

Remark 4.31. As we have seen in the Example 4.25, the verification of EφT =
1 is not a trivial task. It holds if the process βt satisfies Novikov condition (e.g.
Theorem 6.1 in [21])

E exp

(
1

2

∫ T

0

β2
t dt

)
<∞. (4.20)

Remark 4.32. The Girsanov theorem basically states that if W is shifted
by a sufficiently smooth function, then the obtained process induces a measure,
absolutely continuous with respect to the Wiener measure. Obviously this wouldn’t
be possible if the shift is done by a function, say, with a jump - the obtained
process won’t have continuous trajectories. Let’s try to shift W by a continuous
function: an independent Wiener process W ′. In this case V =W −W ′ is again a
Wiener process with quadratic variation 2t. Since quadratic variation is measurable
with respect to natural filtration, the induced measure cannot be equivalent to the
standard Wiener measure, corresponding to quadratic variation t. This indicates
that certain degree of trajectories smoothness is required.

5. Stochastic Differential Equations

Let (Ω,F,Ft,P) be a stochastic basis, carrying a Wiener processW . Let a(t, x)
and b(t, x) be a pair of functionals on the space of continuous functions C[0,T ], which
are non-anticipating in the sense

x1(s) ≡ x2(s), s ≤ t =⇒ a(t, x1) ≡ a(t, x2)
b(t, x1) ≡ b(t, x2)

∀t ∈ [0, T ].

Equivalently this property can be formulated as measurability of a(t, x) with respect
to the Borel σ-algebra Bt, generated by the open sets of C[0,t].
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Definition 4.33. A continuous random process X is a unique strong solution
of the stochastic differential equation (SDE)

dXt = a(t,X)dt+ b(t,X)dWt (4.21)

subject to a random F0-measurable initial condition X0 = η, if

(1) X is Ft-adapted
(2) X satisfies10

P

(∫ T

0

|a(t,X)|dt <∞

)
= 1, P

(∫ T

0

b2(t,X)dt <∞

)
= 1

(3) for each t ∈ [0, T ]

Xt = η +

∫ t

0

a(s,X)ds+

∫ T

0

b(s,X)dWs, P− a.s.

(4) (uniqueness) any two processes, satisfying (1)-(3) are indistinguishable.

The simplest conditions to guarantee the existence and uniqueness of the strong
solutions are e.g.

Theorem 4.34. Assume that a(t, x) and b(t, x) satisfy the functional Lipschitz
condition

|a(t, x)− a(t, y)|2 + |b(t, x)− b(t, y)|2 ≤ L1

∫ t

0

|xs − ys|2dKs + L2|xt − yt|2 (4.22)

and the linear growth condition

a2(t, x) + b2(t, x) ≤ L1

∫ t

0

(1 + x2s)dKs + L2(1 + x2t ) (4.23)

where L1,L2 are constants, Ks is a nondecreasing right continuous function 11, such
that 0 ≤ Ks ≤ T . Then the equation (4.21) has a unique strong solution.

Proof. (only the main idea - see Theorem 4.6 in [21] for details) The proof is
in the spirit of classical differential equations by the Picard iterations method. Let

X
(0)
t ≡ X0 and define X(n) recursively

X
(n)
t = X0 +

∫ t

0

a
(
s,X(n−1)

)
ds+

∫ t

0

b
(
s,X(n−1)

)
dWs.

Now one shows, using the properties of Itô integral, that supt≤T |X(n)
t − X

(n−1)
t |

converges to zero as n→ ∞ P-a.s. and define the process

Xt := X
(0)
t +

∞∑
n=0

(
X

(n+1)
t −X

(n)
t

)
.

Then it is verified that Xt satisfies all the four properties in Definition 4.33. �

10Note that the strong solution actually employs the definition of the stochastic integral

under weaker condition than H2
[0,T ]

, usually considered in these notes
11e.g. Ks = s
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Corollary 4.35. Let a(t, x) and b(t, x) be functions on R+ ×R satisfying the
Lipschitz condition

|a(t, x)− a(t, y)|2 + |b(t, x)− b(t, y)|2 ≤ L|x− y|2, x, y ∈ R
and the linear growth condition

a2(t, x) + b2(t, x) ≤ L(1 + x2).

Then the SDE
dXt = a(t,Xt)dt+ b(t,Xt)dWt, X0 = η

has a unique strong solution.

Remark 4.36. Analogous definition and proofs apply in the multivariate case,
with appropriate adjustments in the conditions to be satisfied by the coefficients a
and b.

Remark 4.37. Sometimes the existence and uniqueness can be verified under
significantly weaker conditions: for example (first shown in [43]) the scalar equation
with b(t, x) ≡ 1, has a unique strong solution if a(t, x) is a bounded function on
R+ × R (without Lipschitz condition). This is a remarkable fact, since it is well
known that classic ordinary differential equation may not have a unique solution
if the drift a(t, x) is not Lipschitz (e.g. Ẋ = 3/2 3

√
X, X0 = 0 has two distinct

solutions Xt ≡ 0 and Xt = t3/2). Loosely speaking the equation is regularized
if a small amount of white noise is plugged in! Even more remarkably, the strong
solution ceases to exist in general if a(t, x), being still bounded, is allowed to depend
on the past of x - a celebrated counterexample was given by B.Tsirelson in [38].

Example 4.38. As in the world of ODE’s, the explicit solutions to SDEs are
rarely available. The Itô formula and a good guess are usually the main tools. For
example the strong solution of the equation

dXt = aXtdt+ bXtdWt, X0 = 1,

is
Xt = exp

(
at− b2/2t+ bWt

)
.

Indeed,

dXt = Xtd(at− b2/2t+ bWt) +
1

2
b2Xtdt = aXtdt+ bXtdWt.

Sometimes it is easier to calculate various statistical parameters of the process,
directly via the corresponding SDE. Let e.g. mt = EXt and Pt = EX2

t . Then

EXt = EX0 + a

∫ t

0

EXsds, =⇒ mt = EX0e
at.

Apply Itô formula to X2
t to get

X2
t = X2

0 +

∫ t

0

2XsdXs +

∫ t

0

b2X2
sds = X2

0 +

∫ t

0

(2a+ b2)X2
sds+

∫ t

0

2XsbdWs

and so

Pt = EX2
0 +

∫ t

0

(2a+ b2)EX2
sds =⇒ Pt = EX2

0 exp{(2a+ b2)t}.

�
Along with the strong solutions, weak solutions of (4.21) are defined.
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Definition 4.39. The equation (4.21) has a weak solution if there exists a
probability basis (Ω′,F′,F′

t,P
′), carrying a Wiener process W and a continuous

F′
t-adapted process X, such that (4.21) is satisfied and P′(X0 ≤ x) = P(η ≤ x). If

all weak solutions induce the same probability distribution, the equation (4.21) is
said to have a unique weak solution.

Remark 4.40. Note that in the case of strong solutions the random process X
is defined on the original probability space and thus X is by definition adapted to
Ft = FW

t ∨ σ{η}, i.e. the driving Wiener process W “generates” X:

FX
t ⊆ FW

t ∨ σ{η}.

In particular any strong solution is trivially also a weak solution with the choice
(Ω′,F′,F′

t,P
′) = (Ω,F,Ft,P). In the case of weak solutions, one is allowed to choose

a probability space and to construct on it a process X to satisfy the relation (4.21).
Typically (as we’ll see shortly) the opposite inclusion holds for weak solutions

FX
t ⊇ FW

t ∨ σ{η}

on the new probability space.

Theorem 4.41. Let b(t, x) ≡ 1 and a(t, x) satisfy

µW

(
x ∈ C[0,T ] :

∫ T

0

a2(t, x)dt <∞

)
= 1,

and ∫
C[0,T ]

exp

{∫ T

0

a(t, x)dWt(x)−
1

2

∫ T

0

a2(t, x)dt

}
µW (dx) = 1

where µW is the Wiener measure on C[0,T ] and Wt(x) is the coordinate process on

the measure space (C[0,T ],B, µ
W ), i.e. Wt(x) := xt, x ∈ C[0,T ], t ∈ [0, T ]. Then

(4.21) subject to X0 = 0 has a weak solution.

Proof. Define

φT (x) = exp

(∫ T

0

a(t, x)dWt(x)−
1

2

∫ T

0

a2(t, x)dt

)
and introduce a new measure µ on (C[0,T ],B) by

dµ

dµW
(x) = φT (x).

Then by Girsanov theorem the process

W ′
t :=Wt −

∫ t

0

a
(
s,W

)
ds

is a Wiener process on (C[0,T ],B, µ) and hence W is the weak solution of

dWt = a(t,Wt)dt+ dW ′
t

on this probability space. �
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Remark 4.42. As the notion of ”weak” suggests, (4.21) may have a weak
solution, without having a strong one. The classical example is the Tanaka equation
(see e.g. Chapter 5.3 in [25])

dXt = sign(Xt)dWt, X0 = 0.

To show that Xt is not measurable with respect to FW
t (and thus the equation does

not have a strong solution) use the Tanaka formula (see Example 4.26).

Since the stochastic integral
∫ t

0
sign(Xs)dWs is a martingale 12 and its quadratic

variation is
∫ t

0
1ds = t, it is a Wiener process itself (by the Levy Theorem 4.5) and

so by Tanaka formula (applied to |Xt|)

Wt =

∫ t

0

sign(Xt)dXt = |Xt| − Lt,

where Lt is the local time of (the Wiener process) Xt. Since the local time is

measurable with respect to F
|X|
t = σ{Xs, s ≤ t}, Wt is measurable with respect to

F
|X|
t , which is strictly less than FX

t , hence

FW
t ⊆ F

|X|
t ⊂ FX

t ,

and Xt cannot be a strong solution.
A weak solution is easily constructed by taking a Wiener process Wt on some

probability space and letting dXt = sign(Wt)dWt. Then sign(Wt)dXt = dWt, which
is nothing but Tanaka equation with respect to the Wiener process Wt on the new
probability space. Note that on the original probability space dXt = sign(Wt)dWt

does not satisfy dXt = sign(Xt)dWt!
Another example of an SDE without strong solution (with nonzero drift with

memory!) is the already mentioned Tsirelson equation (see e.g. Example in Section
4.4.8 in [21]).

5.1. A connection to PDEs. The theory and applications of SDEs with
respect to Wiener process are vast (see e.g. [36], [33]), especially in the case of
diffusions, i.e. when a(t, x) (called the drift coefficient) and b(t, x) (called diffusion
matrix) are pointwise functions of x. In particular there is a close relation between
various statistical properties of diffusions and PDEs.

As an example13 consider the scalar diffusion

dXt = a(Xt)dt+ b(Xt)dWt, t ≥ 0 (4.24)

subject to a random variable X0 with distribution F (x), having density q(x) with
respect to the Lebesgue measure. Assume that the coefficients are such that the
unique strong solution exists.

Define the second order differential (forward Kolmogorov-Focker-Planck) oper-
ator

(L∗f)(x) = − ∂

∂x

(
a(x)f(x)

)
+

1

2

∂2

∂x2

(
b2(x)f(x)

)
. (4.25)

and consider the Cauchy problem

∂

∂t
pt(x) = (L∗pt)(x) (4.26)

p0(x) = q(x). (4.27)

12its integrand is bounded and thus satisfies the Novikov condition trivially
13to be revisited in the context of filtering below
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Suppose that the unique solution pt(x) exists, such that for each t ≥ 0 the function
pt(x) decays sufficiently fast as |x| → ∞. The conditions for this are well known
from the theory of PDEs and can be found in textbooks.

Then pt(x) is the distribution density (with respect to the Lebesgue measure)
of Xt for a fixed t. Take a twice continuously differentiable function f . Then by
the Itô formula, for any fixed t ≥ 0

f(Xt) = f(X0)+

∫ t

0

f ′(Xs)a(Xs)ds+

∫ t

0

f ′(Xs)b(Xs)dWs+
1

2

∫ t

0

f ′′(Xs)b
2(Xs)ds

and so

Ef(Xt) = Ef(X0) +

∫ t

0

E
(
f ′(Xs)a(Xs) +

1

2
f ′′(Xs)b

2(Xs)
)
ds.

Let FX
t (dx) be the probability distribution of Xt, then the latter equation reads∫

R
f(x)FX

t (dx) =

∫
R
f(x)q(x)dx+∫ t

0

∫
R

(
f ′(x)a(x) +

1

2
f ′′(x)b2(x)

)
FX
s (dx)ds. (4.28)

Let’s verify that FX
t (dx) = pt(x)dx is a solution:∫

R

(
f ′(x)a(x) +

1

2
f ′′(x)b2(x)

)
FX
s (dx) =

∫
R

(
f ′(x)a(x) +

1

2
f ′′(x)b2(x)

)
ps(x)dx =

−
∫
R
f(x)

∂

∂x

(
a(x)ps(x)

)
dx+

1

2

∫
R
f(x)

∂2

∂x2

(
b2(x)ps(x)

)
dx =

∫
R
f(x)(L∗pt)(x)dx

where the tail decay properties of pt(x) are to be used to ensure proper integration
by parts. The right hand side of (4.28) becomes∫

R
f(x)q(x)dx+

∫
R
f(x)

∫ t

0

(L∗pt)(x)dx =

∫
R
f(x)q(x)dx+

∫
R
f(x)

∫ t

0

∂

∂t
pt(x)dx

=

∫
R
f(x)q(x)dx+

∫
R
f(x)

(
pt(x)− p0(x)

)
dx =

∫
R
f(x)pt(x)dx

and (4.28) holds. Of course these naive arguments leave many unanswered ques-
tions: e.g. it is not clear whether (4.28) defines the distribution of Xt uniquely, etc.
But nevertheless they give the correct intuition and the correct answer.

It can be shown that under certain conditions on the coefficients (e.g. a(x)x ≤
−x2 and b2(x) ≥ C > 0), the nonnegative solution p(x) of the ODE

(L∗p)(x) = 0

exists and is unique and

lim
t→∞

∫
R
|pt(x)− p(x)|dx = 0.

In other words, the unique stationary distribution of Xt exists and has density p(x).
In the scalar case it may be even found explicitly

p(x) =
C

b2(x)
exp

{∫ x

0

2a(u)

b2(u)
du

}
, (4.29)

where C is the normalization constant.
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6. Martingale representation theorem

Martingales have been mentioned before on several occasions:

Definition 4.43. The process Xt is an Ft-martingale14 if Xt is Ft-adapted
and E(Xt|Fs) = Xs for any t ≥ s ≥ 0.

The Wiener process and the stochastic integral (under appropriate conditions
imposed on the integrand) are examples of martingales. It turns out that any
martingale with respect to the filtration FW

t generated by a Wiener process Wt

is necessarily a stochastic integral with respect to Wt. We chose the simplified
approach of [25] to hint how this deep result emerges. The more complete treatment
of the subject can be found in Chapter 5 of [21].

Theorem 4.44. (The Itô representation theorem) Let ξ be a square integrable
FW
T measurable random variable, i.e. ξ ∈ L2(Ω,FW

T ,P). Then there is an H2
[0,T ]

process f(t, ω), such that

ξ = Eξ +

∫ T

0

f(s, ω)dWs, P− a.s. (4.30)

Remark 4.45. When (ξ,W ) form a Gaussian process, deterministic f(t, ω) ≡
f(t) in (4.30) always exists - see Example 4.47.

Proof. The idea is to show15 that the linear closed subspace E of random
variables of the form16

ηT := exp

{∫ T

0

hsdWs −
1

2

∫ T

0

h2sds

}
, ∀h : [0, T ] 7→ R,

∫ T

0

h2sds <∞ (4.31)

is dense in L2(Ω,FW
T ,P) (all square integrable functionals of the Wiener process on

[0, T ]). By the Itô formula

ηT = 1 +

∫ T

0

hsηsdWs,

and thus ηT admits the representation (4.30) (with f(t, ω) = htηt). Due to linearity
of the stochastic integral the linear combinations of random variables from E are
also of the form (4.31). If the subspace E is dense in L2(Ω,FW

T ,P), any FW
T -

measurable random variable ξ can be approximated by a convergent sequence ξn ∈
E :

ξn = Eξn +

∫ T

0

fn(s, ω)dWs.

Then by the Itô isometry,

E
(
ξn − ξm

)2
=
(
Eξn − Eξm

)2
+

∫ T

0

E
(
fn(s, ω)− fm(s, ω)

)2
ds

14Sometimes the pair (Xt,Ft) us referred as martingale
15the proof is taken from §4.3 [25] (the same proof is used in Ch. V, §3[27]). Different proof

is given in §5.2 [21].
16the functions h are deterministic
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and since ξn converges in L2(Ω,FW
T ,P), fn(t, ω) is a Cauchy sequence and hence

is also convergent, i.e. the limit f(t, ω) exists in the sense∫ T

0

E
(
fn(s, ω)− f(s, ω)

)2
ds

n→∞−−−−→ 0.

Since fn are adapted, f is adapted as well and again by the Itô isometry

ξn = Eξn +

∫ T

0

fn(s, ω)dWs
n→∞−−−−→
L2

Eξ +

∫ T

0

f(s, ω)dWs.

and hence ξ admits (4.30).
Suppose that f is non-unique, i.e. there are f1 and f2, so that

ξ = Eξ +

∫ T

0

f1(s, ω)dWs = Eξ +

∫ T

0

f2(s, ω)dWs.

This implies
∫ T

0
E
(
f1(s, ω)− f2(s, ω)

)2
ds = 0, i.e. f1 = f2, ds× P-a.s.

So the main issue is to verify that E is dense in L2(Ω,FW
T ,P), or equivalently

to check that if ζ ∈ L2(Ω,FW
T ,P) satisfies

Eηζ = 0, ∀η ∈ E , (4.32)

then ζ ≡ 0, P-a.s. If (4.32) holds, then in particular

E exp

{
n∑

i=1

λi
(
Wti+1 −Wti

)
− 1

2

n∑
i=1

λ2i (ti+1 − ti)

}
ζ = 0

for any finite number of 0 = t1 < ... < tn = T and any constants λi, i = 1, ..., n,
which is equivalent to

E exp

{
n∑

i=1

αiWti

}
ζ = 0,

for any real numbers αi. It is easy to verify that the function

G(α) = E exp

{
n∑

i=1

αiWti

}
ζ, α ∈ Rn

is real analytic (i.e. has derivatives of any order at any α ∈ Rn). Then the complex
function

G(z) = E exp

{
n∑

i=1

ziWti

}
ζ, z ∈ Cn

is analytic as well (i.e. satisfies the Cauchy-Riemann condition or equivalently has
a complex derivative at any point of Cn). The analytic function, which vanishes on
the real line (or on the real lines in this case), vanishes everywhere on the complex
plain and thus in particular vanishes on the complex axes

G(iα) = E exp

{
n∑

i=1

iαiWti

}
ζ, α ∈ Rn.

Now for an arbitrary real analytic function φ : Rn 7→ R with compact support

Eφ(Wt1, ...,Wtn)ζ = E(2π)−n/2

∫
Rn

φ̂(u) exp
{
iu1Wt1 + ...+ iunWtn

}
ζ =

(2π)−n/2

∫
Rn

φ̂(u)E exp
{
iu1Wt1 + ...+ iunWtn

}
ζ = 0.
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The claim holds, since smooth compactly supported functions approximate Borel
functions in L2. �

Remark 4.46. The integrand in (4.30) is an adapted random process. It turns
out that functionals of the Wiener process can be expanded into multiple inte-
grals with respect to W with non-random kernels - this is so called Wiener chaos
expansion.

Example 4.47. The random variable ξ =
∫ T

0
Wsds is FW

T -measurable with

ξ =

∫ T

0

(T − t)dWt.

�

Theorem 4.48. (The martingale representation theorem) Let Xt be an square
integrable17 FW

t -martingale. Then there is a unique H2
[0,T ] process g(s, ω), adapted

to FW
t , such that

Xt = EX0 +

∫ t

0

g(s, ω)dWs, t ∈ [0, T ], P− a.s.

Proof. By Theorem 4.44, for each fixed t ∈ [0, T ], there is a unique FW
t -

measurable process f (t)(s, ω), such that (Eξt = Eξ0)

ξt = Eξ0 +

∫ t

0

f (t)(s, ω)dWs,

and we shall verify that f (t)(s, ω) can be chosen independently of t. Let T ≥ t2 ≥
t2 ≥ 0, then

E
(
ξt2 |FW

t1

)
= Eξ0 + E

(∫ t2

0

f (t2)(s, ω)dWs

∣∣∣FW
t1

)
= Eξ0 +

∫ t1

0

f (t2)(s, ω)dWs.

On the other hand

E
(
ξt2 |FW

t1

)
= ξt1 = Eξ0 +

∫ t1

0

f (t1)(s, ω)dWs

and hence by Itô isometry, f (t2)(s, ω) and f (t1)(s, ω) coincide on [0, t1], namely∫ t1

0

E
(
f (t2)(s, ω)− f (t1)(s, ω)

)2
ds = 0.

Then one can choose

f(s, ω) = f (T )(s, ω),

so that

ξt = Eξ0 +

∫ t

0

f (T )(s, ω)dWs = Eξ0 +

∫ t

0

f (t)(s, ω)dWs.

�

17supt∈[0,T ] EX
2
t < ∞
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Example 4.49. Let ξ = W 4
1 and consider the martingale Xt = E

(
W 4

1 |FW
t

)
,

t ≤ 1. By the Markov property ofW , Xt = E(W 4
1 |Wt). Since (W1,Wt) is a Gaussian

pair, the conditional distribution ofW1 given Wt is Gaussian as well with the mean
Wt and variance 1− t. Hence

E(W 4
1 |Wt) =E

(
(W1 −Wt +Wt)

4|Wt

)
=

E
(
(W1 −Wt)

4|Wt

)
+ 4E

(
(W1 −Wt)

3Wt|Wt

)
+

6E
(
(W1 −Wt)

2W 2
t |Wt

)
+ 4E

(
(W1 −Wt)W

3
t |Wt

)
+W 4

t =

3(1− t)2 + 6(1− t)W 2
t +W 4

t .

Applying the Itô formula one gets

dXt = −6(1− t)dt− 6W 2
t dt+ 12(1− t)dWt + 6(1− t)dt

+ 4W 3
t dWt + 6W 2

t dt = 12(1− t)dWt + 4W 3
t dWt.

and hence

ξ = X1 = X0 +

∫ 1

0

(
12(1− t) + 4W 3

t

)
dWt = 3 +

∫ 1

0

(
12(1− t) + 4W 3

t

)
dWt.

�
Example 4.50. This representation is not always easy to find explicitly. Here

is one amazing formula: the random variable S1 = sups∈[0,1]Ws satisfies

S1 = ES1 + 2

∫ 1

0

(
1− Φ

(St −Bt√
1− t

))
dWt

where Φ(x) =
∫ x

−∞
1√
2π
e−r2/2dr. �

The following theorem will be extensively used in the derivation of nonlinear
filtering equations.

Theorem 4.51. Let Y = (Yt)t∈[0,T ] be the strong solution18 of the SDE

dYt = at(Y )dt+ dWt,

where at(·) is a non-anticipating functional on C[0,T ], satisfying∫ T

0

Ea2t (Y )dt <∞, and

∫ T

0

Ea2t (W )dt <∞

Then any square integrable FY
t -martingale Zt has a continuous version satisfying

Zt = Z0 +

∫ t

0

g(s, ω)dWs

with an H2
[0,T ] process g(s, ω), adapted to FY

t .

Proof. Due to the assumptions on at(·), the process

φT (ω) = exp

{
−
∫ t

0

as(Y )dWs −
1

2

∫ t

0

a2s(Y )ds

}
=

exp

{
−
∫ t

0

as(Y )dYs +
1

2

∫ t

0

a2s(Y )ds

}
18in other words a is such that the strong solution exists
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is an FY
t -martingale under P and thus the Radon-Nikodym density

dP̃

dP
(ω) = φT (ω),

defines probability P̃. Moreover by Girsanov theorem, Yt is a Wiener process under

P̃. The process zt := Zt/φt is an FY
t -martingale under P̃:

Ẽ|zt| = E|zt|φT = E|zt|E
(
φT |FY

t ) = E|zt|φt = E|Zt| <∞
and by Lemma 3.11

Ẽ(zt|FY
s ) = Ẽ

(Zt

φt
|FY

s

)
=

E
(

Zt

φt
φT |FY

s

)
E(φT |FY

s )
=

E(Zt|FY
s )

φs
= zs.

Then by Theorem 4.48, zt admits the representation (Y is a Wiener process

under P̃ )

zt = z0 +

∫ t

0

f(s, ω)dYs = z0 +

∫ t

0

f(s, ω)as(Y )ds+

∫ t

0

f(s, ω)dWs

with an FY
t -adapted process f . Applying the Itô formula to Zt = ztφt one gets

(recall that dφt = −at(Y )φtdWt)

dZt = ztdφt + φtdzt − atφtf(t, ω)dt = −ztatφtdWt + φtf(t, ω)atdt+

φtf(t, ω)dWt − atφtf(t, ω)dt =
(
φtf(t, ω)− ztat

)
dWt,

and thus the required representation holds with g(s, ω) := φtf(t, ω)− ztat(Y ). �

Exercises

(1) Prove that the limit of a sequence of uniformly convergent continuous
functions fn : [0, 1] 7→ R is continuous.

(2) Plot a typical path of Wn
t , defined in (4.2) for n = 1, 2, 3

(3) Prove

P
(
D+Wt = ∞ and D+Wt = −∞

)
= 1, ∀t ∈ [0, T ]

(4) Verify that for a standard Gaussian r.v. ξ, P(|ξ| ≤ ε) ≤ ε for any ε > 0.
(5) Prove the law of large numbers

P
(
lim
t→∞

Wt/t = 0
)
= 1.

(6) Let Wt, t ∈ [0, 1] be the Wiener process (with respect to its natural
filtration FW

t ). Verify that each of the following processes is a Wiener
process with respect to appropriate filtration.
(a) Scaling invariance: for any constant c > 0

W c
t :=

1√
c
Wct, t ≤ 1

(b) Time inversion:

Yt =

{
tW1/t, t ∈ (0, 1]

0, t = 0.

(c) Time reversal:

Z =W1 −W1−t, t ≤ 1.
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(d) Symmetry:
Vt = −Wt, t ≤ 1.

(7) Let f : R 7→ [−K,K] for some constant 0 < K < ∞ be a twice continu-
ously differentiable function with bounded derivatives. For a fixed number
q ∈ [0, 1], define

Iq,nt =

[nt]∑
i=1

f(Wsqi
)
(
Wsi −Wsi−1

)
where si = i/n, i ≤ n and sqi = qsi−1 + (1− q)si.
(a) Show that the L limit Iqt = limn→∞ Iq,nt exists (in particular for

q = 1, the Itô integral It := I1t is obtained). Calculate the expectation
of Iqt .

(b) Verify the Wong-Zakai correction formula

Iqt = It + (1− q)

∫ t

0

f ′(Ws)ds.

(8) Prove directly from the definition of Itô integral with respect to the Brow-
nian motion B that
(a)

∫ t

0
sdBs = tBt −

∫ t

0
Bsds

(b)
∫ t

0
B2

sdBs =
1
3B

3
t −

∫ t

0
Bsds

(9) Use the Itô formula to verify the integration by parts rule. Let ft : R+ 7→
R be a deterministic differentiable function, then∫ t

0

fsdWs =Wtft −
∫ t

0

Wsḟtdt.

Use the multivariate Itô formula to derive the analogue of integration by
parts rule, when ft is another Itô process with respect to the same Wiener
process: dft = atdt+ btdWt.

(10) Let at and bt be a pair of deterministic functions. Find the differential of
the process

Xt = exp

{∫ t

0

asds

}{
x+

∫ t

0

exp
(
−
∫ s

0

audu
)
bsdWs

}
,

where x ∈ R. Show that the mean mt = EXt, variance Vt = E(Xt −
mt)

2 and covariance K(t, s) = E(Xt−ms)(Xs−ms) functions satisfy the
equations

ṁt = atmt, m0 = x

V̇t = 2atVt + b2t , V0 = 0

K(t, s) = exp

{∫ t

s

auds

}
Vs, t ≥ s

(11) Use the multivariate Itô formula to show that the process

Rt =
√

(W 1
t )

2 + ...+ (W d
t )

2, t ≥ 0

where W i
t are independent Wiener processes, satisfies

dRt =
d∑

i=1

W i
t dW

i
t

Rt
+
d− 1

2Rt
dt.
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This is so called d-dimensional Bessel process. For the case d = 2, show
that

R3 ≤ E(R4|W3, V3) ≤
√
2 +R2

3.

Hint: the upper bound can be obtained by Jensen inequality.
(12) Let βk(t) = EW k

t , k = 0, 1, 2, .... Use the Itô formula to derive the recur-
sion

βk(t) =
1

2
k(k − 1)

∫ t

0

βk−2(s)ds, k ≥ 2.

Deduce that EW 4
t = 3t2 and find EW 6

t .
(13) Explain the origins of mnemonic rules in Remark 4.28 by sketching the

proof of multivariate Itô formula
(14) Obtain the answer in Example 4.29 by applying the Itô formula directly

(avoiding the use of table).
(15) Verify the existence and uniqueness of the strong solution of the following

equations (check the conditions of Theorem 4.34). Check whether the
given processes solve the corresponding equations as claimed.
(a) Xt = eBt solves

dXt = 0.5Xtdt+XtdBt, X0 = 1

(b) Xt = Bt/(t+ 1) solves

dXt = − 1

1 + t
Xtdt+

1

1 + t
dBt, X0 = 0

(c) Xt = sin(Wt) solves

dXt = −1

2
Xtdt+

√
1−X2

t dBt, B0 ∈ (−π/2, π/2)

(d) X1(t) = X1(0)+t+B1 andX2(t) = X2(0)+X1(0)B2(t)+
∫ t

0
sdB2(s)+∫ t

0
B1(s)dB2(s) solve

dX1 = dt+ dB1

dX2 = X1dB2

(e) Xt = e−tX0 + e−tBt solves

dXt = −Xtdt+ e−tdBt.

(f) Yt = exp(aBt − 0.5a2t)
[
Y0 + r

∫ t

0
exp(−aBs + 0.5a2s)ds

]
solves

dY = rdt+ aY dBt.

(g) The processes X1(t) = X1(0) cosh(t) +X2(0) sinh(t) +
∫ t

0
a cosh(t −

s)dB1+
∫ t

0
b sinh(t−s)dB2 andX2(t) = X1(0) sinh(t)+X2(0) cosh(t)+∫ t

0
a sinh(t− s)dB1 +

∫ t

0
b cosh(t− s)dB2 solve

dX1 = X2dt+ adB1

dX2 = X1dt+ bdB2,

which can be seen as stochastically excited vibrating string equations.
(h) The process Xt =

(
X1(t), X2(t)

)
=
(
cosh(Bt), sinh(Bt)

)
solve

dXt =
1

2
Xtdt+XtdBt.
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(16) Let X and Y be the strong solution of

dXt = −0.5Xtdt− YtdBt

dYt = −0.5Ytdt+XtdBt.

subject to X0 = x and Y0 = y with Bt being a Wiener process (Brownian
motion).
(a) Show that X2

t + Y 2
t ≡ x2 + y2 for all t ≥ 0, i.e. the vector (Xt, Yt)

revolves on a circle.
(b) Find the SDE, satisfied by θt = arctan(Xt/Yt).

(17) Consider the multivariate linear SDE

dXt = AXtdt+BdWt, X0 = η,

where A and B are n × n and n × m matrices, W is the vector of m
independent Wiener process (usually referred as vector Wiener process)
and η is a random variable independent of W and E∥η∥2 <∞.
(a) Find the explicit strong solution of the vector linear equation
(b) Find the explicit expressions for Mt = EXt and Qt = cov(Xt) =

E(Xt −mt)(Xt −mt)
∗ (Hint: find first the ODE’s for mt and Qt)

(c) Find the explicit expression for the correlation matrix Kt,s = E(Xt−
mt)(Xs −ms)

∗ in terms of Qt

(d) Give simple sufficient conditions on A,B and η so that the process
Xt is stationary, i.e. mt ≡ m and Qt ≡ Q for certain (what?) m and
Q.

(e) The linear one dimensional diffusion Xt is called Ornstein-Uhlenbeck
process. Specify your answers in the previous questions in this case.

(18) Consider the equation of a harmonic oscillator, driven by the ”white noise”
Nt

Ẍt + (1 + εNt)X = 0, X0 = 1, Ẋ0 = 1

where ε > 0 is a parameter.
(a) Write this equation as a two dimensional linear Itô SDE with respect

to the Wiener process
(b) Find the mean, variance and covariance functions of the oscillator

position
(c) Verify that the position satisfies the stochastic Volterra equation

Xt = X0 + Ẋ0t+

∫ t

0

(r − t)Xrdr +

∫ t

0

ε(r − t)XrdWr

(19) Write down the KFP PDE, corresponding to the linear SDE

dXt = −aXtdt+ bdWt, X0 ∼ η

where η is a standard Gaussian random variable, b > 0 and a > 0 are
constants. Find the stationary density p(x) and calculate the stationary
mean and the variance. Compare to Exercise (17).

(20) Find explicit Itô representation for the following functionals ofW on [0, T ]:
WT , W

2
T , W

3
T , e

WT , sinWT . Hint: use the Itô formula.



CHAPTER 5

Linear filtering in continuous time

The continuous time linear filtering problem is addressed in this chapter, using
the white noise formalism, developed in the preceding one. In continuous time
setting the filtering formulae are derived by solving the Wiener-Hopf equation,
rather than using the general recursive formulae for orthogonal projection as in the
discrete time.

1. The Kalman-Bucy filter: scalar case

Consider the following system of linear SDEs:

dXt = atXtdt+ btdWt (5.1)

dYt = AtXtdt+BtdVt (5.2)

where W and V are independent Wiener processes and the (scalar) coefficients
are deterministic functions of t, such that the system has a unique strong solution.
These equations are solved subject to random variablesX0 and Y0 with the bounded
covariance matrix, assumed independent of (W,V ). Hereafter B2

t ≥ C > 0 for some
constant C.

In what follows LY
t denotes the closed linear subspace generated by the random

variables Ys, s ≤ t and Ê(·|LY
t ) is the orthogonal projection

1 on LY
t . As discussed in

Chapter 2, X̂t := Ê(Xt|LY
t ) is the best linear estimate of Xt, given the observations

{Ys, s ≤ t}.

Theorem 5.1. (Kalman-Bucy filter) The optimal linear estimate X̂t and the

corresponding mean square error Pt = E(Xt − X̂t)
2 satisfy the equations

X̂t = atX̂tdt+
PtAt

B2
t

(
dYt −AtX̂tdt

)
Ṗt = 2atPt + b2t −

A2
tP

2
t

B2
t

(5.3)

subject to

X̂0 = EX0 + cov(X0, Y0) cov
⊕(Y0)

(
Y0 − EY0

)
P0 = cov(X0)− cov2(X0, Y0) cov

⊕(Y0).
(5.4)

Proof. The proof is done in several steps:

Step 1 (getting rid of X̂0)

1as usual a constant is added to any linear subspace

87
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It would be easier to treat the case X̂0 ≡ 0 and we claim that it is enough to prove
the theorem under this assumption: introduce

X ′
t = Xt − X̂0 exp

(∫ t

0

asds

)
, Y ′

t = Yt −
∫ t

0

AsX̂0 exp

(∫ s

0

audu

)
.

The process (X ′
t, Y

′
t ) satisfies

dX ′
t = atX

′
tdt+ btdWt

dY ′
t = AtX

′
tdt+BtdVt,

subject to X ′
0 = X0 − X̂0 and Y ′

0 = Y0. Clearly LY
t = LY ′

t and hence

X̂t = Ê
(
Xt|LY

t

)
= Ê

(
Xt|LY ′

t

)
= Ê

(
X ′

t|LY ′

t

)
+ X̂0 exp

(∫ t

0

asds

)
.

Note that E
(
X ′

0|Y ′
0

)
= 0 and suppose that X̂ ′

t = Ê(X ′
t|LY ′

t ) and P ′
t = E(X ′

t − X̂ ′
t)

2

satisfy (5.3), subject to X̂ ′
0 = 0 and P ′

0 = E(X ′
0 − X̂ ′

0)
2. Then

dX̂t =dX̂
′
t + atX̂0 exp

(∫ t

0

asds

)
dt =

atX̂tdt+
PtAt

B2
t

(
dYt −AtX̂0 exp

{∫ t

0

asds
}
−AtX̂

′
tdt
)
=

atX̂tdt+
PtAt

B2
t

(
dYt −AtX̂tdt

)
,

which means that X̂t satisfies (5.3) equation as well, subject to X̂ = Ê(X0|Y0),
given by the first equation of (5.4). Moreover

Pt = E
(
Xt − X̂t

)2
= E

(
X ′

t + X̂0 exp
{∫ t

0

asds
}
−

X̂ ′
t − X̂0 exp

{∫ t

0

asds
})2

= E(X ′
t − X̂ ′

t)
2 = P ′

t ,

i.e. Pt satisfies the equation from (5.3).

Step 2 (the general form of the estimate)

From here on Ê(X0|Y0) = 0 is assumed P-a.s. Let 0 = t1 < ... < tn = T be a
partition of [0, T ] and denote by LY

t (n) the subspace, spanned by {Yt1 , ..., Ytn}. This
subspace coincides with the one spanned by the increments {Yt1 , Yt2 −Yt1 , ..., Ytn −
Ytn−1} and so

Ê
(
Xt|LY

t (n)
)
= Ê(Xt|Y0) +

n−1∑
j=1

gj
(
Ytj+1 − Ytj

)
= Ê(Xt|Y0) +

∫ t

0

Gn(t, s)dYs,

where gj are real numbers and G(t, s) =
∑

j≤n gj1{s∈[tj ,tj+1)}. Since L
Y
t is a closed

subspace,

lim
n→∞

Ê
(
Xt|LY

t (n)
)
= Ê

(
Xt|LY

t

)
,

and hence

E

(∫ t

0

Gn(t, s)dYt −
∫ t

0

Gm(t, s)dYt

)2
n,m→∞−−−−−→ 0.
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Since X and V are independent, the latter implies(∫ t

0

(
Gn(t, s)−Gm(t, s)

)2
AsXsds

)2

+

∫ t

0

(
Gn(t, s)−Gm(t, s)

)2
B2

sds
n,m→∞−−−−−→ 0

Then due to the assumption B2
s ≥ C > 0, Gn(t, s) is a Cauchy sequence and hence

converges to a limit G(t, s), so that

Ê(Xt|LY
t ) = Ê(Xt|Y0) +

∫ t

0

G(t, s)dYs.

Step 3 (using orthogonality)

Recall that Ê(X0|Y0) = 0, P-a.s. is assumed, so that EXt = 0 and Ê(Xt|Y0) = 0.
The function G(t, s) satisfies the Wiener-Hopf equation

K(t, u)Au =

∫ t

0

G(t, s)AsK(s, u)Auds+G(t, u)B2
u, t ≥ u ≥ 0, (5.5)

where K(t, s) = cov(Xt, Xs). Indeed, by orthogonality property of the orthogonal
projection, for any fixed t ∈ [0, T ] and any measurable and bounded deterministic
function λ

E
(
Xt − Ê(Xt|LY

t )
)∫ t

0

λsdYs = E

(
Xt −

∫ t

0

G(t, s)dYs

)∫ t

0

λudYu = 0.

Then (5.5) holds, since

EXt

∫ t

0

λudYu =

∫ t

0

λuAuK(t, u)du

and

E

∫ t

0

G(t, s)dYs

∫ t

0

λudYu =

∫ t

0

∫ t

0

G(t, s)AsK(s, u)Auλududs+∫ t

0

λuG(t, u)B
2
udu

for arbitrary λ. Under the assumption B2
t ≥ C > 0, the Wiener-Hopf equation has

a unique solution: suppose it doesn’t, i.e. both G1(t, s) and G2(t, s) satisfy (5.5)
and let ∆(t, s) = G1(t, s)−G2(t, s). Then ∆(t, s) satisfies∫ t

0

∆(t, s)AsK(s, u)Auds+∆(t, u)B2
u = 0, t ≥ u ≥ 0.

Multiply this equation by ∆(t, u) and integrate with respect to u:∫ t

0

∫ t

0

∆(t, u)AuK(s, u)∆(t, s)Asdsdu+

∫ t

0

∆2(t, u)B2
u = 0.

The first term is nonnegative, since the covariance function K(s, u) is nonnegative
definite, and thus for t ∈ [0, T ]∫ t

0

∆2(t, u)B2
u = 0 =⇒ ∆2(t, u) = 0, du− a.s.

Step 4 (solving the Wiener-Hopf equation)
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The uniqueness allows us to look for differentiable G(t, s), since once found it should
be the solution. Differentiating (5.5) with respect to t one obtains

∂

∂t
K(t, u)Au = G(t, t)AtK(t, u)Au+∫ t

0

∂

∂t
G(t, s)AsK(s, u)Auds+

∂

∂t
G(t, u)B2

u

Recall that (Exercise 10 of the previous chapter)

∂

∂t
K(t, u) = atK(t, u), K(u, u) = EX2

u

and hence the latter equation reads

K(t, u)Au

(
at −G(t, t)At

)
− ∫ t

0

∂

∂t
G(t, s)AsK(s, u)Auds−

∂

∂t
G(t, u)B2

u = 0.

Now using the expression for K(t, u)Au from (5.5), one gets(∫ t

0

G(t, s)AsK(s, u)Auds+G(t, u)B2
u

)(
at −G(t, t)At

)
−∫ t

0

∂

∂t
G(t, s)AsK(s, u)Auds−

∂

∂t
G(t, u)B2

u = 0.

or ∫ t

0

{
G(t, s)

(
at −G(t, t)At

)
− ∂

∂t
G(t, s)

}
AsK(s, u)Auds+{

G(t, u)
(
at −G(t, t)At

)
− ∂

∂t
G(t, u)

}
B2

u = 0

Multiply the latter equality by

Ψ(t, u) := G(t, u)
(
at −G(t, t)At

)
− ∂

∂t
G(t, u)

and integrate:∫ t

0

∫ t

0

Ψ(t, s)AsK(s, u)Ψ(t, u)Audsdu+

∫ t

0

Ψ(t, u)2B2
udu = 0,

which gives the differential equation for G(t, s):

∂

∂t
G(t, s) = G(t, s)

(
at −G(t, t)At

)
. (5.6)

With u = t in (5.5), one gets

0 = K(t, t)At −At

∫ t

0

G(t, s)AsK(s, t)ds−G(t, t)B2
t ,
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which implies

0 = AtEXt

(
Xt −

∫ t

0

G(t, s)AsXsds
)
−G(t, t)B2

t =

AtEXt

(
Xt −

∫ t

0

G(t, s)dYs

)
−G(t, t)B2

t
†
=

AtE
(
Xt −

∫ t

0

G(t, s)dYs

)2
−G(t, t)B2

t = AtPt −G(t, t)B2
t ,

where the equality † is due to the orthogonality property and Pt = (Xt − X̂t)
2.

Hence the ODE (5.6) reads

∂

∂t
G(t, s) = G(t, s)

(
at −

A2
tPt

B2
t

)
. (5.7)

Being a linear equation, the latter admits the representationG(t, s) = Φ(s, t)G(s, s),
where Φ(s, t) is the Cauchy2 (or fundamental) solution corresponding to (5.7). Then

X̂t =

∫ t

0

G(t, s)dYs =

∫ t

0

Φ(s, t)G(s, s)Ys = Φ(0, t)

∫ t

0

Φ−1(0, s)G(s, s)dYs

and applying the Itô formula one gets the first equation in (5.3)

dX̂t =

∫ t

0

Φ−1(0, s)G(s, s)dYs
∂

∂t
Φ(0, t)dt+Φ(0, t)Φ−1(0, t)G(t, t)dYt =∫ t

0

Φ−1(0, s)G(s, s)dYs

(
at −

A2
tPt

B2
t

)
Φ(0, t)dt+G(t, t)dYt =

atX̂tdt+
AtPt

B2
t

(
dYt −AtX̂t

)
.

The process Dt = Xt − X̂t satisfies

dDt = atDtdt+ btdWt −
AtPt

B2
t

(
AtXtdt+BtdVt −AtX̂t

)
=(

at −
A2

tPt

B2
t

)
Dtdt+ btdWt −

AtPt

Bt
dVt.

Applying the Itô formula to D2
t one gets

dD2
t = 2DtdDt + b2tdt+

(
AtPt

Bt

)2

dt = 2
(
at −

A2
tPt

B2
t

)
D2

t dt+

b2tdt+

(
AtPt

Bt

)2

dt+ 2Dt

(
btdWt −

AtPt

Bt
dVt

)
and taking the expectation

dPt = 2
(
at −

A2
tPt

B2
t

)
Ptdt+ b2tdt+

(
AtPt

Bt

)2

dt = 2atdt+ b2tdt−
A2

tP
2
t

B2
t

dt,

subject to P0 = E(X0 − X̂0)
2 (recall the construction of Step 1). �

2Since solution of linear equation depends linearly on the initial condition, it can be written

as a time dependent linear operator (just multiplication by Φ(s, t) in this case), acting on the
initial condition. The Cauchy operator satisfies Φ(0, s)Φ(s, t) = Φ(0, t) and is invertible.
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The Kalman-Bucy filter is a linear SDE with time varying coefficients, which
depend on Pt, being the solution of the Riccati equation (5.3). The innovation
process

W̄t =

∫ t

0

dYs −AsX̂sds

Bs

has uncorrelated increments and in the case of Gaussian (X0, Y0) is a Wiener process
(!), with respect to the filtration FY

t (this is worked out in details in the next chapter,
dealing with nonlinear filtering).

Example 5.2. Consider the system (5.1)-(5.2) with constant coefficients: at ≡
a, etc. and subject to a random square integrable X0 and Y0 = 0. The Kalman-
Bucy filter in this case is

X̂t = aX̂tdt+
PtA

B2

(
dYt −AX̂tdt

)
Ṗt = 2aPt + b2 − A2P 2

t

B2

(5.8)

subject to X̂0 = EX0 and P0 = E(X0 − EX0)
2.

Consider the quadratic equation

2aP + b2 −A2P 2/B2 = 0. (5.9)

If A ̸= 0 and b ̸= 0 are assumed, then it has two solutions

P± =
B2

A2

(
a±

√
a2 +

A2b2

B2

)
,

with P− < 0 and P+ > 0. Consider the suboptimal filter

X̃t = aX̃tdt+
AP+

B2

(
Yt −AX̃tdt

)
, X̃0 = 0.

The error process δt = Xt − X̃t, satisfies

dδt =
(
a− A2P+

B2

)
δtdt+ bdWt +

AP+

B
dVt, δ0 = X0.

Since

a− A2P+

B2
= a−

(
a+

√
a2 +

A2b2

B2

)
= −

√
a2 +

A2b2

B2
< 0, (5.10)

the mean square error of this filter is bounded: supt≥0 Eδ
2
t < ∞ and thus by

optimality of X̂t

sup
t≥0

Pt ≤ Eδ2t <∞.

The function Rt := Pt − P+, satisfies

Ṙt = 2aRt −
A2

B2

(
P 2
t − P 2

+

)
= 2aRt −

A2

B2
Rt

(
Pt + P+

)
and hence

|Rt| = |R0| exp
{
2at− A2

B2

∫ t

0

(
Ps + P+

)
ds

}
≤ |R0| exp

{
2at− A2

B2
P+t

}
= |R0| exp

{
at−

√
a2 +

A2b2

B2
t

}
t→∞−−−→ 0,
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due to (5.10). In other words, if A ̸= 0 and b ̸= 0, the solution of the Riccati
equation stabilizes and the limit mean square error P∞ = limt→∞ P∞ equals the
unique positive solution of the algebraic Riccati equation (5.9). If A = 0 and b ̸= 0,
then Pt = E(Xt − EXt)

2 and the limit P∞ exists and is finite if a < 0, otherwise
Pt grows to infinity. Finally if b = 0 and A ̸= 0, then P∞ = 0, either if a < 0 (since
Xt → 0 in L2) or if a > 0 (since then a/Ae−atYt → X0 in L2) or if a = 0 (since
A−1Yt/t→ X0 in L2).

Unlike in the discrete time case, the scalar Riccati equation in (5.8) has an
explicit solution:

Pt =
α− −Kα2 exp

(
(α+−α−)A2t

B2

)
1−K exp

(
(α+−α−)A2t

B2

) , (5.11)

where

α± = A−2
(
aB2 ±B

√
a2B2 +A2b2

)
, K =

P0 − α−

P0 − α+
.

�

2. The Kalman-Bucy filter: the general case

In this section we give the general formulation of linear filtering problem and the
corresponding Kalman-Bucy equations. The proof uses the very same arguments as
in the scalar case and is left as an exercise. Let X = (Xt)t∈[0,T ] and Y = (Yt)t∈[0,T ]

be the process with values in Rm and Rn, generated by the system of linear SDEs

dXt =
(
a0(t) + a1(t)Xt + a2(t)Yt

)
dt+ b1(t)dWt + b2(t)dVt (5.12)

dYt =
(
A0(t) +A1(t)Xt +A2(t)Yt

)
dt+B1(t)dWt +B2(t)dWt, (5.13)

with respect to independent vector Wiener processes W and V and subject to a
square integrable random vector (X0, Y0) independent of (W,V ). The coefficients
are deterministic matrix functions of appropriate dimensions, such that the unique
strong solution of the system exists3 and (B ◦B)(t) := B1B

∗
1 +B2B

∗
2 is uniformly

nonsingular matrix.

Theorem 5.3. The the orthogonal projection X̂t = Ê(Xt|LY
t ) and the corre-

sponding error covariance matrix Pt = E
(
Xt − X̂t

)(
Xt − X̂t

)∗
satisfy the Kalman-

Bucy equations4

dX̂t =
(
a0 + a1X̂tdt+ a2Ŷt

)
dt+

(
b ◦B + PtA

∗
1

)(
B ◦B

)−1· (5.14)(
dYt − (A0 −A1X̂t −A2Yt)dt

)
Ṗt =a1Pt + Pta

∗
1 + b ◦ b−

(
b ◦B + PtA

∗
1

)(
B ◦B

)−1(
b ◦B + PtA

∗
1

)∗
(5.15)

subject to

X̂0 = EX0 − cov(X0, Y0) cov
⊕(Y0)(Y0 − EY0),

P0 = cov(X0)− cov(X0, Y0) cov
⊕(Y0) cov(Y0, X0)

and where
b ◦B = b1B

∗
1 + b2B

∗
2 , b ◦ b = b1b

∗
1 + b2b

∗
2.

3for example if the drift coefficients are integrable and the diffusion coefficients are square

integrable functions of t with respect to the Lebesgue measure.
4the time dependence of the coefficients is omitted for brevity
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3. Linear filtering beyond linear diffusions

The Kalman-Bucy filtering formulae are applicable in somewhat more general
setting than (5.1)-(5.2) (or (5.12)-(5.13)).

Definition 5.4. wt is a Wiener process in wide sense, if w0 = 0, Ewt = 0 and
Ewtws = s ∧ t, t, s ≥ 0.

Example 5.5. The stochastic integral wt =
∫ t

0
Xs/

√
EX2

sdWs with a positive
process Xt ≥ C > 0 is a Wiener process in the wide sense:

Ewtws =

∫
t∧s

E

(
Xu√
EX2

u

)2

du = t ∧ s.

�

Since wt has uncorrelated increments, one may define the stochastic integral

It(f) =

∫ t

0

fsdws := lim
n→∞

n∑
i=1

fti−1

(
wti − wti−1

)
,

where f is an L2
[0,T ] deterministic function and 0 = t0 < ... < tn = T , such that

maxi |ti − ti−1| → 0 as n→ ∞ (by construction similar to the Itô integral).
Since the linear SDE

dXt = atXtdt+ btdWt,

has an explicit solution

Xt = exp

{∫ t

0

audu

}(
X0 +

∫ t

0

exp

{
−
∫ s

0

audu

}
bsdWs

)
,

analogously one may define the process

Xt = exp

{∫ t

0

audu

}(
X0 +

∫ t

0

exp

{
−
∫ s

0

audu

}
bsdws

)
to be the solution of

dXt = atXtdt+ btdwt.

With these definitions it is almost obvious that the Kalman-Bucy filtering equa-
tions generate the optimal linear estimates, if the Wiener processes are replaced by
the Wiener processes in the wide sense. Let’s demonstrate the application of this
generalization in the following example:

Example 5.6. Consider the SDE system

dXt = −Xtdt+ dWt

dYt = X3
t dt+ dVt

(5.16)

subject to random X0 with zero mean and EX2
0 = 1/2, Y0 = 0. By the Itô formula

dX3
t = 3X2

t dXt + 3Xtdt = −3X3
t dt+ 3Xtdt+ 3X2

t dWt.

Define Zt = X3
t and

wt =
√
2

∫ t

0

X2
sdWs −

Wt√
2
.
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Then wt is the Wiener process in the wide sense (t ≥ s):

Ewtws = E

(√
2

∫ s

0

X2
udWu − Ws√

2

)2

=

2

∫ s

0

EX4
udu+

s

2
− 2

∫ s

0

EX2
udu = 2

3

4
s+

s

2
− s = s,

where the Gaussian property of Xt have been used (EX2
t = 1/2, EX4

t = 3(EX2
t )

2 =
3/4, etc.). Analogously

EwtWt = E

(√
2

∫ t

0

X2
udWu − Wt√

2

)
Wt =

√
2tEX2

t − t√
2
= 0.

So (wt,Wt, Vt) is a three-dimensional Wiener process in wide sense. Consider now
the linear system

dXt = −Xtdt+ dWt

dZt = −3Ztdt+ 3Xtdt+
3√
2
dwt +

3

2
dWt

dYt = Ztdt+ dVt,

(5.17)

subject to (X0, Z0) = (X0, X
3
0 ) (i.e. EZ0 = 0, EZ2

0 = EX6
0 = 15/8, etc.). The

estimate E(Xt|LY
t ) can be obtained by means of the Kalman-Bucy equations for

(5.17).
�

Exercises

(1) Verify that if X0 and Y0 are such that Ê(X0|Y0) = 0, P-a.s. in the model

(5.1)-(5.2), then EXt = 0 and Ê(Xt|Y0) = 0, P-a.s.
(2) Show that the innovation process

W̄t = B−1

∫ t

0

(dYs −AX̂sds)

satisfies the following properties (t ≥ s ≥ 0)

(a) Ê
(
W̄t|LY

s

)
= W̄s

(b) E
(
W̄t − W̄s

)2
= t− s

(c) Derive the Kalman-Bucy equations, assuming that W̄ is a Wiener

process (in the wide sense) and that Ê(Xt|LY
t ) =

∫ t

0
Γ(t, s)dW̄s for

some Γ(t, s).

(3) Let Yt =
∫ t

0
Wsds+Vt, whereW and V are independent Wiener processes.

(a) Find the optimal linear filter for Ŵt = Ê(Wt|LY
t )

(b) Find the explicit form for the optimal kernel G(t, s), such that

Ŵt =

∫ t

0

G(t, s)dYs.

Hint: use the explicit solution (5.11).

(c) Derive the equation for linear estimate V̂t = Ê(Vt|LY
t ).

Hint: use the two dimensional formulae of Theorem (5.3)).
(4) Derive the equations (11), claimed in the Introduction (page 12).
(5) Prove that the equations (5.3) have the unique strong solution.
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(6) Reformulate and solve the problem (8) (page 32) in continuous time
(7) Reformulate and solve the problem (9) (page 33) in continuous time



CHAPTER 6

Nonlinear filtering in continuous time

In this chapter the two main approaches to nonlinear filtering problem in con-
tinuous time are presented. The first one relies on the representation of the con-
ditional expectation as a stochastic integral with respect to the innovation Wiener
process. The second one uses the abstract version of the Bayes formula, involv-
ing the Girsanov change of measure to define a reference probability, under which
the dependence between the signal and the observations is cancelled and thus the
calculations are carried out in a particularly simple way. This approach gives an
additional insight into the structure of FKK equation: it turns out that its solution
is a normalized version of the measure valued stochastic process, generated by a
linear Zakai equation.

As in the discrete time case, both approaches lead to measure valued equations
which at best characterize the conditional law of the signal given the observation
σ-algebra. Remarkably for certain particular systems the filtering process turns to
be finite dimensional, i.e. can be parameterized by a finite number of computable
parameters. For example, Kalman-Bucy filtering equations turn to be the finite
dimensional parametrization in the linear Gaussian case.

1. The innovation approach

The typical filtering problem in continuous time is to find a recursive realization
for the conditional expectation of the signal Markov process at the current time,
given the past of its noisy trajectory. Let’s consider the following general framework
of this problem: let (X,Y ) = (Xt, Yt)t∈[0,T ] be supported on a stochastic basis
(Ω,F,Ft,P) and satisfy the following assumptions:

(a) X admits the decomposition

Xt = X0 +

∫ t

0

Hsds+Mt, (6.1)

where (Mt,Ft) is a martingale1 and Ht is an H2
[0,T ]-process.

1As mentioned before, the definition of the stochastic integral can be extended to martingales,
more general than Wiener process. In this introductory course we don’t really need this generality.

In fact Mt will be either a stochastic integral with respect to Wiener process or a Poisson like
jump processes

97
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(b) Y is the Itô process, satisfying2

Yt =

∫ t

0

Asds+BWt, (6.2)

where A is an H2
[0,T ] process, B > 0 is a fixed constant andW is a Wiener

process, independent of X.

The following generic notation will be used throughout: πt(ξ) = E
(
ξt|FY

t

)
for a

process ξ = (ξt)t∈[0,T ], where FY
t is the natural filtration of Y .

1.1. The innovation Wiener process. The innovation process W̄ was al-
ready encountered in the Kalman-Bucy filtering setting.

Theorem 6.1. The process Y , satisfying (b), admits the representation

Yt = Y0 +

∫ t

0

πs(A)ds+BW̄t, (6.3)

where

W̄t = B−1(Yt −
∫ t

0

πs(A)ds). (6.4)

is a Wiener process with respect to FY
t .

Proof. Clearly W̄ has continuous trajectories, starting at zero. For brevity
let B = 1, then

W̄t =Wt +

∫ t

0

(
As − πs(A)

)
ds.

Show that

E
(
eiλ(W̄t−W̄s)|FY

t

)
= e−

1
2λ

2(t−s). (6.5)

Applying the Itô formula to ηt = exp
{
iλW̄t

}
one gets

dηt = iληtdηt −
1

2
λ2ηtdt = iληtdWt + iληt

(
At − πt(A)

)
dt− 1

2
λ2ηtdt

and hence

eiλW̄t = eiλW̄s + iλ

∫ t

s

eiλW̄udWu+

iλ

∫ t

s

eiλW̄u
(
Au − πu(A)

)
du− 1

2
λ2
∫ t

s

eiλW̄udt

Since W is a Wiener process with respect to the filtration FW
t ∨ FY

t ,

E

(∫ t

s

eiλW̄udWu

∣∣∣FY
s

)
= 0.

2With an additional effort, the diffusion coefficient B can be allowed to depend on Y and
time t. The essential requirement is then B2

t (Y ) ≥ C > 0, which prevents the filtering problem
from being singular. Also note that if B is allowed to depend on the signal X, the filtering problem

becomes ill-posed. For example, if B(x) = x, x ∈ R, then X2
t can be recovered from the quadratic

variation of Y and thus X2
t is FY

t -measurable, i.e. known up to its sign. These situations are

customary taboo in filtering
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Note that for u ≥ s

E
(
eiλW̄uπu(A)

∣∣FY
s

)
= E

(
eiλW̄uE(Au|FY

u )
∣∣FY

s

)
=

E
(
E(Aue

iλW̄u |FY
u )
∣∣FY

s

)
= E

(
Aue

iλW̄u |FY
s

)
and thus

E

(∫ t

s

eiλW̄u
(
Au − πu(A)

)
du
∣∣∣FY

s

)
= 0.

Then ηt = E(eiλW̄t |FY
s ) satisfies

ηt = ηs −
1

2
λ2
∫ t

s

ηudu,

which verifies (6.5). �

Remark 6.2. Note that W̄ need not be (and in general is not) a Wiener process
with respect to other filtrations, e.g. FW .

Remark 6.3. Note that the equation (6.6) is driven not by the observation
process Y itself, but rather by a Wiener process, generated by Y . Loosely speaking,
this Wiener process is a minimal representation of the information carried by Y ,
sufficient for estimation of X, which is the origin of the term ”innovation”. Clearly
FW̄
t ⊆ FY

t , since W̄t is a measurable functional of Y on [0, t] or in other words,
the information carried by W̄ is less than information carried by Y . Naturally the
question arises: does W̄t encodes all the information, i.e. FY

t ⊆ FW̄
t ? The answer

to this question is affirmative if the SDE (6.3) has a strong solution. However, in
view of the Tsirelson’s counterexample, mentioned in Remark 4.37, the latter is not
at all clear. Some positive results in this direction can be found in Section 12.2 in
[21].

Remark 6.4. Recall the statement of the Girsanov theorem: given a Wiener

process (Wt,Ft) on a fixed probability basis (Ω,F,Ft,P), there is a probability P̃
on (Ω,F), equivalent to P and such that the process, obtained by shifting W by
a random process with sufficiently smooth trajectories (absolutely continuous with
respect to the Lebesgue measure), is again a Wiener process with respect to Ft

under P̃. On the other hand, the innovations (6.4)

W̄t =Wt +

∫ t

0

(
As − πs(A)

)
ds

exhibit a different phenomenon: W shifted by a special function becomes a Wiener
process under the original measure P but with respect to another filtration FY

t !

1.2. Fujisaki-Kallianpur-Kunita equation. Using the innovation form of
Y and the martingale representation theorem an equation for the measure valued
filtering process πt(·) is derived below.

Theorem 6.5. Assume (a) and (b), then πt(X) satisfies satisfies the Fujisaki-
Kallianpur-Kunita (FKK) equation: for any t ∈ [0, T ] P-a.s.

πt(X) = π0(X) +

∫ t

0

πs(H)ds+

∫ t

0

(
πs(AX)− πs(A)πs(X)

)
B−1dW̄t, (6.6)

where (W̄t,F
Y
t ) is the innovation Wiener process defined in (6.4).
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Remark 6.6. FKK equation (6.6) is a measure valued equation: its (strong)
solution, say πt(dx), can be defined as a stochastic process taking values in the
space of probability measures on

(
R,B(R)

)
, adapted to FY

t and satisfying (6.6) with
probability one. For example, if the process πt(dx) has a density, (6.6) can be used
to derive an equation for the conditional density process (Kushner-Stratonovich
equation (6.13)). The existence and uniqueness of the strong solution is not an
easy issue.

Proof. The filtering process admits the following decomposition

πt(X) = π0(X) +

∫ t

0

πs(H)ds+ M̄t, t ∈ [0, T ], (6.7)

where

M̄t := E(X0|FY
t )− π0(X) + E

(∫ t

0

Hsds|FY
t

)
−
∫ t

0

πs(H)ds+ E(Mt|FY
t ).

is a square integrable FY
t -martingale. The square integrability of each component

follows from the assumptions onX and the martingale property is verified as follows:
the first term is a martingale, since (t ≥ s ≥ 0)

E
(
E(X0|FY

t )− π0(X)|FY
s

)
= E(X0|FY

s )− π0(X).

The second one satisfies

E

(
E
(∫ t

0

Hudu|FY
t

)
−
∫ t

0

πu(H)du
∣∣∣FY

s

)
=∫ t

0

E
(
Hu|FY

s

)
du−

∫ t

0

E
(
πu(H)

∣∣FY
s )du =

E

(∫ s

0

Hudu
∣∣FY

s

)
−
∫ s

0

πu(H)du+

∫ t

s

E
(
Hu|FY

s

)
du−

∫ t

s

E
(
πu(H)

∣∣FY
s )du =

E

(∫ s

0

Hudu
∣∣FY

s

)
−
∫ s

0

πu(H)du

and thus is also a martingale. Finally the third term inherits martingale properties
from Mt:

E
(
E(Mt|FY

t )|FY
s

)
= E(Mt|FY

s ) = E
(
E(Mt|Fs)

∣∣FY
s ) = E(Ms|FY

s ).

Since Yt is an Itô process, generated by (6.3), where W̄t is a Wiener process, by
Theorem 4.51, being a square integrable FY

t -martingale, M̄t has the representation

M̄t =

∫ t

0

gs(Y )dW̄s,

with gs being FY
t -adapted process. To verify (6.6) one should show that

gs(Y ) =
(
πs(AX)− πs(A)πs(X)

)
/B, ds× P− a.s., (6.8)

which is equivalent to∫ t

0

Eλs(Y )
(
gs(Y )−

(
πs(AX)− πs(A)πs(X)

)
/B
)
ds = 0, (6.9)
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for any bounded FY
t -adapted3 λs(Y ).

Let zt =
∫ t

0
λs(Y )dW̄s and ξt =

∫ t

0
gs(Y )dW̄s, then∫ t

0

Eλs(Y )gs(Y )ds = Eztξt. (6.10)

On the other hand,

Eztξt = Ezt

(
πt(X)− π0(X)−

∫ t

0

πs(H)ds

)
= E

(
ztXt −

∫ t

0

zsHsds

)
,

since Eztπ0(X) = Eπ0(X)E(zt|FY
0 ) = 0, Eztπt(X) = EztE

(
Xt|FY

t

)
= EztXt and

Ezt

∫ t

0

πs(H)ds = E

∫ t

0

E(zt|FY
s )πs(H)ds =∫ t

0

zsπs(H)ds =

∫ t

0

E(zsHs|FY
s )ds = E

∫ t

0

zsHsds.

Using the definition of W̄

zt =

∫ t

0

λsdWs +

∫ t

0

λs
As − πs(A)

B
ds.

Then

Eztξt = E

(
Xt

∫ t

0

λsdWs −
∫ t

0

(∫ s

0

λudWu

)
Hsds

)
+

E

(
Xt

∫ t

0

λs
As − πs(A)

B
ds−

∫ t

0

(∫ s

0

λu
Au − πu(A)

B
du
)
Hsds

)
(6.11)

We claim that the first expectation vanishes: indeed

EX0

∫ t

0

λs(Y )dWs = EX0E
(∫ t

0

λs(Y )dWs|F0

)
= 0

and

E

∫ t

0

(∫ s

0

λudWu

)
Hsds = E

∫ t

0

E
(∫ t

0

λudWu

∣∣∣Fs

)
Hsds =

E

∫ t

0

E
(
Hs

∫ t

0

λudWu

∣∣∣Fs

)
ds = E

∫ t

0

λudWu

∫ t

0

Hsds

and hence

E

(
Xt

∫ t

0

λsdWs −
∫ t

0

(∫ s

0

λudWu

)
Hsds

)
=

E

∫ t

0

λsdWs

(
Xt −X0 −

∫ t

0

Hsds

)
= E

∫ t

0

λsdWsMt = 0,

where the latter equality holds4 since the martingale M is independent of W .

3if α is FY
t -adapted and satisfies

∫ t
0 Eβsαsds = 0 for any bounded FY

t -adapted β, then with

particular βt = sign(αt) one gets
∫ t
0 E|αs|ds = 0 and so αs = 0 ds× P-a.s. on [0, t].

4verify this claim when Mt is another Wiener process, independent of W . By the way, M

and W can be assumed to be correlated and then the correlation will enter the filtering formula
(6.6) at this point.
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Consider the first term in the second expectation in the right hand side of
(6.11):

EXt

∫ t

0

λs
As − πs(A)

B
ds =

E

∫ t

0

λs
Xs

(
As − πs(A)

)
B

ds+ E

∫ t

0

λs(Xt −Xs)
As − πs(A)

B
ds =

E

∫ t

0

λs
πs(XA)− πs(X)πs(A)

)
B

ds+ E

∫ t

0

λs(Mt −Ms)
As − πs(A)

B
ds+

E

∫ t

0

λs

∫ t

s

Hudu
As − πs(A)

B
ds =

E

∫ t

0

λs
πs(XA)− πs(X)πs(A)

)
B

ds+ E

∫ t

0

Hs

(∫ s

0

λu
Au − πu(A)

B
du

)
ds

Assembling all parts together we obtain

Eztξt =

∫ t

0

Eλs
πs(XA)− πs(X)πs(A)

)
B

ds

which along with (6.10) implies (6.8). �

1.3. Kushner-Stratonovich equation for conditional density. The FKK
equation (6.6) takes a somewhat more concrete form in the case when (Xt, Yt) are
diffusion processes, namely the (strong) solution of SDE5

dXt = a(Xt)dt+ b(Xt)dVt, X0 = ξ,

dYt = A(Xt)dt+BWt, Y0 = 0
(6.12)

where ξ is a random variable with probability density p0(x), independent of the
Wiener processes V and W .

Theorem 6.7. Assume that there is an FY
t -adapted random field6 qt(x), satis-

fying the Kushner-Stratonovich stochastic partial integral-differential equation

qt(x) = p0(x) +

∫ t

0

(
L∗qs

)
(x)ds+B−1

∫ t

0

qs(x)
(
A(x)− πs(A)

)
dW̄s (6.13)

where L∗ is defined in (4.25) and

πt(A) =

∫
R
A(x)qt(x)dx.

Then qt(x) is a version of the conditional density of Xt given FY
t , i.e. for any

bounded function φ

E
(
φ(Xt)|FY

t

)
=

∫
R
φ(x)qt(x)dx.

5Hereon Y0 = 0 is usually set for brevity
6by random field we mean a random process, parameterized by time variable t and space

variable x. All the usual properties (e.g. adaptedness) are assumed to be satisfied uniformly in x.
In our case sufficient smoothness (e.g. twice differentiability) in x is required.
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Proof. Verify that qt(x) is a solution of (6.6) and thus is a version of the
required conditional expectation. For any twice continuously differentiable function
f ,

f(Xt) = f(X0) +

∫ t

0

(Lf)(Xs)ds+

∫ t

0

f ′(Xs)b(Xs)dVs, t ∈ [0, T ],

where L is the backward Kolmogorov operator

(
Lf
)
(x) = a(x)

∂

∂x
f(x) +

b2(x)

2

∂2

∂x2
f(x). (6.14)

Then the random measure πt(dx) = qs(x)dx satisfies FKK equation (6.6) for f(Xt)
with arbitrary f :

πs
(
(Lf)(X)

)
=

∫
R

(
a(x)

∂

∂x
f(x) +

b2(x)

2

∂2

∂x2
f(x)

)
qs(x)dx =∫

R

(
− ∂

∂x
a(x)qs(x) +

1

2

∂2

∂x2
b2(x)qs(x)

)
f(x)dx =

∫
R

(
L∗qs

)
(x)f(x)dx (6.15)

and

πs(fA)− πs(f)πs(A) =

∫
R
f(x)A(x)qs(x)dx− πs(A)

∫
R
f(x)qs(x)dx =∫

R
f(x)qs(x)

(
A(x)− πs(A)

)
dx.

Then the right hand side of (6.6) reads

π0(f) +

∫ t

0

πs
(
Lf
)
ds+B−1

∫ t

0

(
πs(fA)− πs(f)πs(A)

)
dW̄s =∫

R
f(x)

(
p0(x) +

∫ t

0

(
L∗qs

)
(x)ds+B−1

∫ t

0

qs(x)
(
A(x)− πs(A)

)
dW̄s

)
dx =∫

R
f(x)qt(x)dx,

where (6.13) has been used. �

Remark 6.8. Due to complicated structure of (6.13), the assumption of the
Theorem 6.7 are not easy to verify.

2. Reference measure approach

The nonlinear filtering equation can be derived by the Girsanov change of
measure. For the clarity of presentation, we chose a specific form of As in (6.2):

dYt =

∫ t

0

g(s,Xs)ds+BWt, (6.16)

where g is a measurable R+ × R 7→ R function.
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2.1. Kallianpur-Striebel formula.

Theorem 6.9. (Kallianpur-Striebel formula) Assume that g(s,Xs) is an H2
[0,T ]

process and Y satisfies (6.16). Let (Ω̌, F̌, P̌) be an auxiliary copy of (Ω,F,P), then
for any bounded and measurable function f : R 7→ R

E
(
f(Xt)|FY

t

)
(ω) =

Ěf
(
Xt(ω̌)

)
ψt

(
X(ω̌), Y (ω)

)
Ěψt

(
X(ω̌), Y (ω)

) , P− a.s. (6.17)

where

ψt(X,Y ) = exp

{
1

B2

∫ t

0

g(s,Xs)dYs −
1

2B2

∫ t

0

g2(s,Xs)ds

}
. (6.18)

Remark 6.10. The integral J(ω̌, ω) :=
∫ t

0
g
(
Xs(ω̌)

)
dYs(ω) is a well defined

random variable on the product space
(
Ω̌×Ω, F̌×F, P̌×P

)
. In fact the integration

over ω̌ could have been done on the original probability space by means of an
independent copy of X.

Remark 6.11. The function f need not to be bounded, but should rather
satisfy appropriate integrability conditions.

Remark 6.12. The expression in (6.18) is sometimes referred as the likelihood
ratio, being the Radon-Nikodym density of the law of Y under the hypothesis that
Y either has a drift or not.

Proof. Consider B = 1 for brevity (B ̸= 1 is treated completely analogously).
Denote by µW the Wiener measure on C[0,T ], i.e. the probability measure induced
by W . Let

zt(X,W ) = exp

(
−
∫ t

0

g(s,Xs)dWs −
1

2

∫ t

0

g2(s,Xs)ds

)
, t ∈ [0, T ].

Under the assumption on g, zt is a martingale and so

dP̃

dP
(ω) = zT

(
X(ω), Y (ω)

)
, (6.19)

defines the probability measure P̃ .
Let Y x be given by7

Y x
t =

∫ t

0

g(s, xs)ds+Wt, t ∈ [0, T ], x ∈ D[0,T ].

Then by Girsanov theorem (recall that P ∼ P̃ and Y x is a Wiener process under

P̃ )

E
(
zT (x,W )Ψ(Y x)

)
=

∫
C[0,T ]

Ψ(y)µW (dy), µX − a.s,

where µX is the probability measure induced by X. Now by independence of X
and W under P, for any bounded and measurable functionals Φ and Ψ

ẼΨ(Y )Φ(X) = EzT (X,W )Ψ(Y )Φ(X) =∫
D[0,T ]

EzT (x,W )Ψ(Y x)Φ(x)µX(dx) =

∫
C[0,T ]

Ψ(y)µW (dy)

∫
D[0,T ]

Φ(x)QX(dx)
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This implies that under P̃, Y is a Wiener process (take Φ ≡ 1 and arbitrary Ψ),
X has the same distribution as under P (take Ψ ≡ 1 and arbitrary Φ) and Y and
X are independent.

Since zt(X,W ) is Ft-martingale and

zt(X,W ) = exp

(
−
∫ t

0

g(s,Xs)dYs +
1

2

∫ t

0

g2(s,Xs)ds

)
= ψ−1

t (X,Y ),

by Lemma 3.11

E
(
f(Xt)|FY

t

)
=

Ẽ
(
f(Xt)z

−1
T (X,W )|FY

t

)
Ẽ
(
z−1
T (X,W )|FY

t

) =
Ẽ
(
f(Xt)z

−1
t (X,W )|FY

t

)
Ẽ
(
z−1
t (X,W )|FY

t

) =

Ẽ
(
f(Xt)ψt(X,Y )|FY

t

)
Ẽ
(
ψt(X,Y )|FY

t

) =
Ěf
(
Xt(ω̌)

)
ψt

(
X(ω̌), Y (ω)

)
Ěψt

(
X(ω̌), Y (ω)

) ,

where the latter holds by independence of X and Y under P̃. �

Remark 6.13. The drift term in (6.16) can be allowed to depend on Y : let

Yt =

∫ t

0

g(s,Xs, Y )ds+BWt,

where g is a non-anticipating measurable R+×R×C[0,t] 7→ R functional, such that
the SDE has the unique strong solution. Let ψt(X,Y ) be defined by (6.18) with
g(s,Xs) replaced by g(s,Xs, Y ). Then for any measurable and bounded f : R 7→ R

E
(
f(Xt)

∣∣FY
t

)
=

Ẽ
(
f(Xt)ψt(X,Y )|FY

t

)
Ẽ
(
ψt(X,Y )|FY

t

) , (6.20)

where Ẽ is the expectation with respect to probability P̃ (defined similarly to
(6.19)), under which X and Y are independent, X is distributed as under P and Y
is a Wiener process.

Remark 6.14. The Kallianpur-Striebel formula can be reformulated as

E
(
f(Xt)|FY

t

)
(ω) =

∫
C[0,T ]

f(xt)ψt

(
x, Y (ω)

)
µX(dx)∫

C[0,T ]
ψt

(
x, Y (ω)

)
µX(dx)

, (6.21)

where µX is the probability measure (distribution) induced by X on D[0,T ] under
either P or P′.

Example 6.15. Consider the Bayesian estimation problem of a random variable
θ (”constant unknown signal”) from the observations

Yt =

∫ t

0

g(s, θ)ds+Wt.

7X is assumed to have right continuous pathes with finite left limits. Such functions are
usually referred as cadlag (French abbreviature) or corlol (English one). In other words, the
trajectories are allowed to have countable number of finite jumps. This space, denoted by D[0,T ]

is not complete under the usual supremum metric. The so called Skorohod metric turns it into a
complete separable space
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Then by Kallianpur-Stribel formula

E(θ|FY
t ) =

Ěθ(ω̌) exp
{∫ t

0
g
(
s, θ(ω̌)

)
dYs − 1

2

∫ t

0
g2
(
s, θ(ω̌)

)
ds
}

exp
{∫ t

0
g
(
s, θ(ω̌)

)
dYs − 1

2

∫ t

0
g2
(
s, θ(ω̌)

)
ds
} =

∫
R x exp

{∫ t

0
g(s, x)dYs − 1

2

∫ t

0
g2(s, x)ds

}
dFθ(x)∫

R exp
{∫ t

0
g(s, x)dYs − 1

2

∫ t

0
g2(s, x)ds

}
dFθ(x)

,

where Fθ(x) is the distribution function of θ. In particular, if g(s, x) ≡ g(x)

E(θ|FY
t ) =

∫
R x exp{g(x)Yt −

1
2g

2(x)t}dFθ(x)∫
R exp{g(x)Yt − 1

2g
2(x)t}dFθ(x)

.

�

2.2. The Zakai equation. Note that the Kallianpur-Striebel formula does
not impose much structure on X. If the signal satisfies (6.1), an SDE can be
derived for the unnormalized conditional law of Xt given FY

t . Below we use the

generic notation σt(ξ) = Ẽ(ξtψt|FY
t ), where ξ is an Ft adapted random process.

Theorem 6.16. Assume that in addition to the assumptions of Theorem 6.9,
X obeys the representation (6.1), then

dσt(X) = σt(H)dt+B−2σt(Xg)dYt, t ∈ [0, T ], (6.22)

subject to σ0(X) = EX0 and

πt(f) =
σt(f)

σt(1)

for any bounded and measurable f .

Remark 6.17. Similarly to (6.6), the Zakai equation (6.22) is a measure valued
stochastic equation - see Remark 6.6.

Proof. The process ψt satisfies SDE (again B = 1 is set for brevity)

dψt = ψtg(t,Xt)dYt, ψ0 = 1. (6.23)

Then by the Itô formula8

Xtψt = X0 +

∫ t

0

ψsdXs +

∫ t

0

Xsdψs =

X0 +

∫ t

0

ψsHsdt+

∫ t

0

ψsdMs +

∫ t

0

Xsg(s,Xs)ψsdYs.

The equation (6.22) is obtained by taking the conditional expectation given FY
t ,

under P̃. First note that

Ẽ

(∫ t

0

ψsHsds
∣∣∣FY

t

)
=

∫ t

0

Ẽ
(
ψsHs

∣∣FY
t

)
ds =

∫ t

0

Ẽ
(
ψsHs

∣∣FY
s

)
ds,

8Here we use the extension of the Itô formula for general martingales (not necessarily Wiener
processes or their stochastic integrals). In the case when it is applied to f(x, y) = xy and inde-

pendent martingales, it reduces to the usual differentiation rule for product. Verify this in the
case of a pair of independent Wiener processes.
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where the latter equality holds since (ψs, Hs) is FX
s ∨ FY

s -measurable and thus

independent of FY
[s,T ] = σ{Yu − Ys, s ≤ u ≤ T} under P̃. For the same reason

Ẽ

(∫ t

0

ψsdMs|FY
t

)
= 0, (6.24)

and

Ẽ

(∫ t

0

Xsg(s,Xs)ψsdYs
∣∣FY

t

)
=

∫ t

0

Ẽ
(
Xsg(s,Xs)ψs|FY

s

)
dYs. (6.25)

The vulgar proof of these facts can be done by verifying them for simple processes
and then extending to the general case by an approximation argument (refer Corol-
laries 1 and 2 of Theorem 5.13 in [21] for a more solid reasoning). �

The FKK equation (6.6) can be recovered from (6.22)

Corollary 6.18. Under the setup of Theorem 6.16, the conditional expectation
πt(X) = E

(
Xt|FY

t

)
satisfies

πt(X) = π0(X) +

∫ t

0

πs(H)ds+

∫ t

0

(
πs(gX)− πs(g)πs(X)

)
B−1dW̄s, (6.26)

where

W̄t = B−1
(
Yt −

∫ t

0

πs(g)ds
)
.

Proof. By Kallianpur-Striebel formula πt(X) = σt(X)/σt(1). By (6.22) the
process σt(1) satisfies

dσt(1) = B−2σt(g)dYt, σ0(1) = 1.

and by the Itô formula

dπt = d

(
σt(X)

σt(1)

)
=
dσt(X)

σt(1)
− σt(X)

σ2
t (1)

dσt(1) +
σt(X)σ2

t (g)

B2σ3
t (1)

dt− σt(g)σt(Xg)

B2σ2
t (1)

dt =

σt(Ht)

σt(1)
dt+

σt(Xg)

B2σt(1)
dYt −

σt(X)σt(g)

B2σ2
t (1)

dYt +
σt(X)σ2

t (g)

B2σ3
t (1)

dt− σt(g)σt(Xg)

B2σ2
t (1)

dt =

πt(H)dt+
πt(Xg)

B2
dYt −

πt(X)πt(g)

B2
dYt +

πt(X)π2
t (g)

B2
dt− πt(g)πt(Xg)

B2
dt =

πt(H)dt+B−2
(
πt(Xg)− πt(X)πt(g)

)(
dYt − πt(g)dt

)
which verifies (6.26). �

2.3. Stochastic PDE for the unnormalized conditional density. Sim-
ilarly to the Kushner-Stratonovich PDE (6.13) for the conditional density in the
case of diffusions, the corresponding PDE for the unnormalized conditional density
can be derived using (6.22). Consider the diffusion signal, given by the SDE

dXt = a(t,Xt)dt+ b(t,Xt)dVt, X0 ∼ η (6.27)

where V is a Wiener process, independent ofW , the coefficients guarantee existence
and uniqueness of the strong solution and η is a random variable with density p0(x),
with

∫
R x

2p0(x)dx <∞.



108 6. NONLINEAR FILTERING IN CONTINUOUS TIME

Theorem 6.19. Assume that there is an FY
t -adapted nonnegative random field

ρt(x), satisfying
9 the Zakai PDE

dρt(x) =
(
L∗ρt

)
(x)dt+B−2g(s, x)ρt(x)dYs, ρ0(x) = p0(x). (6.28)

Then ρt(x) is a version of the unnormalized conditional density of Xt given FY
t , so

that for any measurable f , such that Ef2(Xt) <∞,

E
(
f(Xt)|FY

t ) =

∫
R f(x)ρt(x)dx∫

R ρt(x)dx
, P− a.s. (6.29)

Proof. Let f be a twice continuously differentiable function (again B = 1 is
treated). Then by the Itô formula

f(Xt) = f(X0) +

∫ t

0

(Lf)(Xs)ds+
1

2

∫ t

0

f ′′(Xs)b
2(Xs)dVs,

where L is defined in (6.14). Applying (6.22) to f(Xt) one obtains

σt(f) = σ0(f) +

∫ t

0

σs(Lf)ds+

∫ t

0

σs(fg)dYs.

Let’s verify that the (random) measure corresponding to the density ρt(x), is a
solution of the latter equation:∫ t

0

σs(Lf)ds+

∫ t

0

σs(fg)dYs =∫ t

0

∫
R

(
a(x)f ′(x) +

b2(x)

2
f ′′(x)

)
ρs(x)dxds+

∫ t

0

∫
R
f(x)g(s, x)ρs(x)dxdYs =∫

R
f(x)

(∫ t

0

(
L∗ρs

)
(x)ds+

∫ t

0

g(s, x)ρs(x)dYs

)
dx =∫

R
f(x)

(
ρt(x)− ρ0(x)

)
dx = σt(f)− σ0(f).

�
Remark 6.20. The solution existence and uniqueness for (6.28) is the issue far

beyond the scope of these lecture notes. The density ρt(x) even at the first glance
is not an easy mathematical object to treat: being twice differentiable in x, it is
very nonsmooth in time t, as should be a diffusion. Still (6.28) is much easier to
deal with compared to (6.13).

2.4. The robust filtering formulae. The stochastic PDE (6.28) involves
stochastic integral, which is defined on the continuous functions only in the sup-
port of the Wiener measure. It turns out, that it may be rewritten as a PDE
without stochastic integral, but rather with random coefficients, depending on Y
continuously and thus well defined for all continuous functions. Let for simplicity
g(s, x) ≡ g(x) and define

ρ̃t(x) = Rt(x)ρt(x), (6.30)

where

Rt(x) = exp

{
− 1

B2
Ytg(x) +

1

2B2
g2(x)t

}
.

9The natural question arises at this point: what is the (strong) solution of stochastic PDE ?

Clearly besides the obvious property of adaptedness to Ft, a solution should satisfy some integra-
bility properties in x variable, etc. This issue is beyond the scope of these notes.
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Then by the Itô formula

dρ̃t(x) = −g(x)ρ̃t
B2

dYt +
g2(x)ρ̃t
2B2

dt+
g2(x)ρ̃t
2B2

dt+

Rt(x)dρt(x)−
g2(x)ρ̃t
B2

dt = Rt(x)
(
L∗ρt

)
(x)dt,

which leads to

dρ̃t(x) = Rt(x)
(
L∗R−1

t (x)ρ̃t

)
(x)dt, ρ̃0(x) = p0(x)

ρt(x) = R−1
t (x)ρ̃t(x).

(6.31)

The PDE (6.31) is sometimes referred as robust filtering equation, corresponding
to the gauge transformation (6.30).

3. Finite dimensional filters

The nonlinear filtering equations (6.6) and (6.22), as well as the correspond-
ing PDE versions (6.13) and (6.28), are in general infinite dimensional, meaning
that their solutions may not belong to a family of stochastic fields, parameteri-
zable by a finite number of sufficient statistics. The importance of the latter is
obvious in applications. This section covers some special settings when a finite di-
mensional filter exists. There is no constructive way to derive or even to verify the
existence of the finite dimensional filters in general. However there is a beautiful
connection between this issue and Lie algebras generated by the coefficients of the
signal/observation equations - see the survey [31]. Some negative results about the
existence of the finite dimensional realization of the filtering equation with cubic
observation nonlinearity are available [24], [11].

3.1. The Kalman-Bucy filter revisited. The Kalman-Bucy filtering for-
mulae can be obtained from the general nonlinear filtering equations.

Theorem 6.21. The solution of (5.12) and (5.13), subject to a Gaussian vector
(X0, Y0) is a Gaussian process. In particular the conditional distribution of Xt,

given FY
t is Gaussian with mean X̂t and covariance Pt, generated by (5.14) and

(5.15) respectively.

Proof. Let’s verify the claim for the simple scalar example (of course the
general vector case is obtained similarly with more tedious calculations). Consider
the two dimensional system of linear SDEs

dXt = aXtdt+ bdWt

dYt = AXtdt+BdVt
(6.32)

subject to Y0 = 0 and a Gaussian random variable X0, where W and V are inde-
pendent Wiener processes, independent of X0, and all the coefficients are scalars.
The process (X,Y ) form a Gaussian system and hence the conditional law of Xt,
given FY

t is Gaussian as well, so that we are left with the problem of finding the
equations for the conditional mean and variance.
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Applying the equation (6.6) to Xt one gets the familiar equation for X̂t :=
πt(X)

X̂t = EX0 +

∫ t

0

aX̂sds+

∫ t

0

A
(
πs(X

2)− π2
s(X)

)
B−2

(
dYs −AX̂tds

)
=

EX0 +

∫ t

0

aX̂sds+

∫ t

0

APs

B2

(
dYs −AX̂tds

)
, (6.33)

where

Pt = πt(X
2)− π2

t (X) = E(X2
t |FY

t )−
(
E(Xt|FY

t )
)2

=

E
((
Xt − E(Xt|FY

t )
)2|FY

t

)
.

By the Itô formula

X2
t = X2

0 +

∫ t

0

2aX2
sds+

∫ t

0

b2ds+

∫ t

0

2XsbdWs,

and thus (6.6) gives

πt(X
2) = π0(X

2
0 ) +

∫ t

0

(
2aπs(X

2) + b2
)
ds+∫ t

0

A
(
πs(X

3)− πs(X)πs(X
2)
)
B−2

(
dYs −AX̂sds

)
(6.34)

Note that πt(X
2) = X̂2

t + Pt and moreover since the conditional law of Xt is

Gaussian E
(
(Xt − X̂t)

p|FY
t

)
= 0 for any odd p and so

πt(X
3) = E

(
X3

t |FY
t

)
= E

(
(Xt − X̂t + X̂t)

3|FY
t

)
= 3E

(
(Xt − X̂t)

2|FY
t

)
X̂t + X̂3

t = 3PtX̂t + X̂3
t .

Then (6.34) gives

X̂2
t + Pt = X̂2

0 + P0 +

∫ t

0

(
2aX̂2

s + 2aPs + b2
)
ds+

∫ t

0

2APsX̂sB
−2
(
dYs −AX̂sds

)
.

Recall that W̄t =
(
dYs −AX̂sds

)
/B is a Wiener process and thus by (6.33),

dX̂2
t = X̂2

0 +

∫ t

0

2aX̂2
sds+

∫ t

0

A2P 2
s

B2
ds+ 2X̂s

APs

B
dW̄s.

The latter two equations imply

Ṗt = 2aPt + b2 − A2P 2
t

B2
, P0 = E(X0 − EX0)

2,

which is the familiar Riccati equation for the filtering error. �

Remark 6.22. In particular in the linear Gaussian case the conditional density
equation (6.13) is solved by

pt(x) =
1√
2πPt

exp

{
−(x− X̂t)

2

2Pt

}
.
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3.2. Conditionally Gaussian filter. In the previous section the key reason
for the FKK to be finite (two) dimensional was the Gaussian property of the pair
(X,Y ). In fact the very same arguments would be applicable, if only the conditional
distribution of Xt given FY

t is Gaussian. This leads to the following generalization
of the Kalman-Bucy filter due to R.Liptser and A.Shiryaev (see Chapters 11, 12 in
[21])

Theorem 6.23. (Conditionally Gaussian filter) Consider the SDE system

dXt =
(
a0(t, Y ) + a1(t, Y )Xt

)
dt+ b(t, Yt)dWt (6.35)

dYt =
(
A0(t, Y ) +A1(t, Y )Xt

)
dt+BdVt (6.36)

subject to Y0 = 0 and Gaussian random variable X0, where B is a positive constant
and the rest of the coefficients are non-anticipating functionals of Y , satisfying the
conditions under which the unique strong solution (X,Y ) = (Xt, Yt)t∈[0,T ] exists

and EX2
t < ∞ t ∈ [0, T ]. Then the conditional distribution of Xt given FY

t is

Gaussian with the mean X̂t and variance Pt, given by

dX̂t =
(
a0(t, Y ) + a1(t, Y )X̂t

)
dt+

A1(t, Y )Pt

B2

(
dYt −A0(t, Y )dt−A1(t, Y )X̂tdt

)
Ṗt = 2a1(t, Y )dt+ b2(t, Y )dt− A2

1(t, Y )P 2
t

B2
,

(6.37)

subject to X̂0 = EX0 and P0 = E(X0 − X̂0)
2.

Remark 6.24. Note that in general the processes (X,Y ) do not form a Gauss-
ian system anymore. The only essential constrain on the structure of (6.35) and
(6.36) is linear dependence on Xt. Despite of similarity, the difference between the
Kalman-Bucy filter (5.3) and the equations (6.37) is significant: the latter are no
longer linear and the conditional filtering error is no longer deterministic ! This
nonlinear generalization plays an important role in various problems of control and
optimization (see e.g. the ”Applications” volume of [21]). The multidimensional
version of the filter is derived similarly.

Proof. Only the conditional Gaussian property of (X,Y ) is to be verified

E
(
eiλXt

∣∣FY
t

)
= exp

{
iλmt(Y )− 1

2
λ2Vt(Y )

}
, λ ∈ R (6.38)

where mt(Y ) and Vt(Y ) are some non-anticipating functionals of Y . Once (6.38) is
established the very same arguments of the preceding section lead to the equations

(6.37), i.e. mt(Y ) ≡ X̂t and Vt(Y ) ≡ Pt.
The equation (6.35) has a closed form solution

Xt = γ(t, Y )

(
X0 +

∫ t

0

γ−1(s, Y )b(s, Y )dWs

)
:= Φt(X0,W, Y ). (6.39)

where γ(t, Y ) = exp
{∫ t

0

(
a0(s, Y ) + a1(s, Y )

)
ds
}
.

The (6.20) version of Kallianpur-Striebel formula implies

E
(
eiλXt |FY

t

)
=

Ẽ
(
eiλXtψt(X,Y )|FY

t

)
Ẽ
(
ψt(X,Y )|FY

t

) , (6.40)
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where

ψt(X,Y ) = exp

{∫ t

0

(
A0(s, Y ) +A1(s, Y )Xs

)
dYs−

1

2

∫ t

0

(
A0(s, Y ) +A1(s, Y )Xs

)2
ds

}
.

Insert the expression (6.39) into the right hand side of (6.40). Since Y and (W,X0)

are independent under Ẽ (which follows from the independence of Y and X), the

expectation Ẽ averages over (X0,W ), keeping Y fixed. This results in the quadratic
form of the type (6.38), due to Gaussian property of the system (X0,W ), which
enter the exponent linearly. In fact its precise expression is identical to the one
that would have been obtained in the usual Kalman-Bucy setting. �

Remark 6.25. Another (much more harder!) way to verify the claim of the
Theorem 6.23 is to check that Gaussian density with the mean and variance driven
by (6.37) is the unique solution of FKK equation (or Kushner-Stratonovich equa-
tion).

3.3. Linear systems with non-Gaussian initial condition. If the initial
condition X0 is non-Gaussian, the conditional law of Xt given FY

t is no longer
Gaussian and thus the Kalman-Bucy equations do not necessarily generate the
conditional mean and variance. It turns out that a finite dimensional filter exists
and even can be derived in a number of ways, of which we choose the elegant
approach due to A.Makowski [30].

Theorem 6.26. Consider the processes (X,Y ) generated by the linear system
(with B = 1) (6.32), started from a random variable X0 with distribution F (x),∫
R x

2dF (x) <∞. Then for any measurable f , such that Ef2(Xt) <∞, t ∈ [0, T ]

E
(
f(Xt)|FY

t

)
=

∫
R2

∫
R f(x1 + eatu)ψt(u, x2)dF (u)Γt(x1, x2)dx1dx2∫

R
∫
R ψt(u, x2)dF (u)γt(x2)dx2

(6.41)

where

ψt(u, x) = exp

{
ux− u2

2

A2

2a
(e2at − 1)

}
,

Γt(x, y) is the two dimensional Gaussian density with the mean and covariance
satisfying the equations

dX̂t = aX̂tdt+AP 2
t

(
dYt −AX̂t

)
, X̂0 = 0

dξ̂t = A
(
eat +Qt

)(
dYt −AX̂t

)
, ξ̂0 = 0

(6.42)

and
Ṗt = 2aPt + b2 −A2P 2

t , P0 = 0

Q̇t = aQt − PtA
2
(
Qt + eat

)
, Q0 = 0

Ṙt = A2e2at −A2
(
Qt + eat

)2
, R0 = 0,

(6.43)

and γt(x) is its marginal with the mean ξ̂t and variance Rt.

Proof. Let X◦ be the solution of Ẋ◦
t = aX◦

t , subject to X
◦
0 = X0, i.e.

X◦
t = eatX0, t ∈ [0, T ],
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and X ′
t be the solution of

dX ′
t = aX ′

tdt+ bdWt, X ′
0 = 0.

Then Xt = X◦
t +X ′

t, t ∈ [0, T ] and

Yt =

∫ t

0

AX ′
sds+

∫ t

0

AX◦
s ds+ Vt. (6.44)

Define

φt = exp

{
−
∫ t

0

AX◦
s dVs −

1

2

∫ t

0

(
AX◦

s

)2
ds

}
Since EX2

0 < ∞ is assumed, φt is a martingale and by Girsanov theorem the
Radon-Nikodym derivative

dP̃

dP
(ω) = φT (ω)

defines the probability measure P̃, under which

V ′
t :=

∫ t

0

AX◦
s ds+ Vt

is a Wiener process, independent of X◦ (or equivalently of X0) and X ′ (which
is verified as in the proof of Kallianpur-Striebel formula of Theorem 6.9), whose
distributions are preserved. Moreover

E
(
f(Xt)|FY

t

)
=

Ẽ
(
f(X ′

t + eatX0)ψt(X0, ξ)|FY
t

)
Ẽ
(
ψt(X0, ξ)|FY

t

) (6.45)

where

ψt(X
◦, ξ) := φ−1

t =exp

{∫ t

0

AX◦
s dV

′
s − 1

2

∫ t

0

(
AX◦

s

)2
ds

}
=

exp

{
X0

∫ t

0

AeasdV ′
s − X2

0

2

∫ t

0

(
Aeas

)2
ds

}
=

exp

{
X0

∫ t

0

dξs −
X2

0

2

∫ t

0

(
Aeas

)2
ds

}
,

where dξt = AeatdV ′
t was defined. Note that under P̃, (X ′, ξ, Y ) form a Gaussian

system (independent of X0) and thus the conditional distribution of (X ′
t, ξt) given

FY
t is Gaussian, whose parameters can be found by the Kalman-Bucy filter for the

linear model

dX ′
t = aX ′

tdt+ bdWt, X ′
0 = 0

dξt = AeatdV ′
t , ξ0 = 0

dYt = AX ′
tdt+ dV ′

t , Y0 = 0.

Applying the equations (5.14) and (5.15), one gets (6.42) and (6.43) and the formula
(6.41) follows from (6.45).

�

3.4. Markov chains with finite state space.
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3.4.1. The Poisson process. Similarly to the role played by the Wiener process
W in the theory of diffusion, the Poisson process Π is the main building block of
purely discontinuous martingales, counting processes, etc.

Definition 6.27. A Markov process Π with piecewise constant (right continu-
ous) trajectories with unit positive jumps, Π0 = 0, P-a.s. and stationary indepen-
dent increments, such that10

P
(
Πt −Πs = k|FΠ

s

)
=

(
λ(t− s)

)k
e−λ(t−s)

k!
, k ∈ Z+, (6.46)

is called Poisson process with intensity11 λ ≥ 0.

The existence of Π is a relatively easy matter: let (τn)n≥1 be an i.i.d sequence
of exponential random variables

P
(
τ1 ≥ t

)
= e−λt, t ≥ 0,

and let12

Πt = max
n≥0

{
n :

n∑
i=1

τi ≤ t

}
, t ≥ 0. (6.47)

Theorem 6.28. Π defined in (6.47) is a Poisson process.

Proof. Clearly Π0 = 0 and the trajectories of (6.47) are piecewise constant

as required. Introduce σk =
∑k

i=1 τi. Then

P(Πt = k|FΠ
s ) =

k∑
ℓ=0

P(Πt = k|τ1, ..., τℓ, τℓ+1 > s− σℓ)1{Πs=ℓ}

and thus

P(Πt = k|τ1, ..., τℓ, τℓ+1 > s− σℓ) =
(λ(t− s))(k−ℓ)e−λ(t−s)

(k − ℓ)!

is to be verified:

P(Πt = k|τ1, ..., τℓ, τℓ+1 > s− σℓ) = P(σk ≤ t < σk+1|τ1, ..., τℓ, τℓ+1 > s− σℓ) =

E
(
P(σk ≤ t < σk+1|τ1, ..., τℓ+1)

∣∣∣τ1, ..., τℓ, τℓ+1 > s− σℓ

)
=

E
(
P(τℓ+2 + ...+ τk ≤ t− σℓ − τℓ+1 < τℓ+2 + ...+ τk+1|σℓ, τℓ+1)

∣∣∣σℓ, τℓ+1 > s− σℓ

)
= P

(
τℓ+2 + ...+ τk ≤ t− σℓ − τℓ+1 < τℓ+2 + ...+ τk+1

∣∣σℓ, τℓ+1 > s− σℓ
)
=

eλ(s−σℓ)

∫ ∞

s−σℓ

P
(
τℓ+2 + ...+ τk ≤ t− σℓ − u < τℓ+2 + ...+ τk+1

∣∣σℓ)λe−λudu =

=

∫ ∞

0

P
(
τℓ+2 + ...+ τk ≤ t− s− u′ < τℓ+2 + ...+ τk+1

)
λe−λu′

du′ =

= P
(
τℓ+1 + τℓ+2 + ...+ τk ≤ t− s < τℓ+1 + τℓ+2 + ...+ τk+1

)
=

= P
(
τ1 + ...+ τk−ℓ ≤ t− s < τ1 + ...+ τk−ℓ+1

)
= P

(
Πt−s = k − ℓ

)
.

10extra care should be taking, when manipulating the filtrations of point processes. This

delicate matter is left out (as many others) - see the last chapter in [21] for a discussion
11in (6.46) 00 = 1 is understood and so λ = 0 is allowed
12∑0

i=1 ... ≡ 0 is understood
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Now (6.46) holds, if

P(Πt = k) =
(λt)ke−λt

k!
, k ≥ 0. (6.48)

Note that

P(Πt = k) = P(σk ≤ t < σk + τk+1) = EI(σk ≤ t)I(τk+1 > t− σk) =

EI(σk ≤ t)e−λ(t−σk) =

∫ t

0

e−λ(t−s)dP(σk ≤ s). (6.49)

and

P(σk ≤ s) = P(τk ≤ s− σk−1) = EP(τk ≤ s− σk−1|σk−1) =

EI(s− σk−1 ≥ 0)(1− e−λ(s−σk−1)) =

∫ s

0

(1− e−λ(s−u))dP(σk−1 ≤ u) (6.50)

Clearly

P(σ1 ≤ s) = P(τ1 ≤ s) = 1− e−λs

and so by induction P(σk ≤ s) has density, which by (6.50) satisfies

dP(σk ≤ s)

ds
= λ

∫ s

0

e−λ(s−u) dP(σk−1 ≤ u)

du
du

and thus13

dP(σk ≤ s)

ds
= λ

(λs)k−1e−λs

(k − 1)!
.

Now the equation (6.48) follows from (6.49). �

A simple consequence of the definition is that Πt−λt is a martingale. Remark-
ably the converse is true (compare the Levy theorem (Theorem 4.5) for the Wiener
process)

Theorem 6.29. (S. Watanabe) A process Nt with piecewise constant (right
continuous) trajectories with positive unit jumps is a Poisson process with intensity
λ, if Nt − λt is a martingale.

Since the pathes of Πt are of bounded variation, the stochastic integral with
respect to Π is understood in Stieltjes sense: for any bounded14 random process X∫ t

0

Xs−dNs =
∑
s≤t

Xs−∆Ns =
∑
s≤t

Xs−
(
Ns −Ns−

)
, (6.51)

where Xs− denotes the left limit of X at point s. If X is an FN
t -adapted process,

then
∫ t

0
Xs−(dNs − λds) is a martingale15.

13This is known as Erlang distribution
14we won’t need integrands more complicated than bounded ones
15This is again an oversimplification, as many things in these notes



116 6. NONLINEAR FILTERING IN CONTINUOUS TIME

3.4.2. Markov chains in continuous time. The Markov chains with finite num-
ber of states is the simplest example of Markov processes in continuous time 16.
Among many possible constructions we choose the following: let S = {a1, ..., ad} be
a finite set of (distinct) real numbers and Nt be d × d matrix, whose off diagonal
entries are independent Poisson processes with intensities λij ≥ 0. The diagonal
entries are chosen in a special way: Nt(i, j) = −

∑
j ̸=iNt(i, j). Now define the

vector process It by

It = I0 +

∫ t

0

dN∗
s Is−, (6.52)

where I0 is a random vector, equal to one of the vectors of the standard Euclidian
basis17 {e1, ..., ed} with probabilities pi ≥ 0. It is easy18 to see that only one
component of It equals unity and all others are zeros at any time t ≥ 0, i.e. It takes
the values in {e1, ..., ed} as well. Finally define

Xt =
d∑

i=1

aiIt(i), t ≥ 0.

Theorem 6.30. The process X is a Markov chain with initial distribution19 p0
and transition intensities matrix Λ with off-diagonal entries λij and

λii := −
∑
j ̸=i

λij , i = 1, ..., d,

meaning that

ps,t(j) := P(Xt = aj |FX
s ) =

d∑
i=1

ps,t(i, j)1{Xs=ai}, t ≥ s ≥ 0, (6.53)

where the matrix ps,t solves the forward Kolmogorov equation20

∂

∂t
ps,t = Λ∗ps,t, ps,s = Ed×d.

Proof. Since It takes values in {e1, ..., ed}, by definition FX
t = FI

t and thus
P(Xt = ai|FX

s ) = P(It = ei|FI
s) = qs,t(i), i = 1, ..., d., where qs,t := E(It|FI

s). The
latter satisfies

qs,t = Is + E

(∫ t

s

dN∗
uIu−

∣∣∣FI
s

)
=

Is + E

(∫ t

s

(
dN∗

u − Λ∗du
)
Iu− +

∫ t

s

Λ∗Iu−du
∣∣∣FI

s

)
= Is +

∫ t

s

Λ∗qs,udu, (6.54)

where21 the martingale property of the stochastic integral has been used. Reading
(6.54) componentwise gives (6.53) and verifies the claim of the theorem. �

16for the general theory of Markov processes, the reader is referred to the classic text [6] -

but don’t expect easy reading!
17i.e. i-th entry of ei is one and the rest are zeros
18note that the probability of an event, that any two of a finite number of Poisson processes

have a jump simultaneously is zero - this follows directly from the construction of the Poisson
process, since exponential distribution does not have atoms.

19distributions on S are identified with vectors of the simplex Sd−1 = {x ∈ Rd :
∑d

i=1 xi =

1, xi ≥ 0} in an obvious way
20Ed×d is d-dimensional identity matrix
21Note that

∫ t
0 Λ∗Is−ds =

∫ t
0 Λ∗Isds since the integrator is continuous!



3. FINITE DIMENSIONAL FILTERS 117

In particular the equation (6.53) implies that the a priori distribution of Xt,
i.e. the vector of probabilities pi = P(Xt = ai) satisfies the equation

ṗt = Λ∗pt, subject to p0, (6.55)

whose explicit solution is given by means of the matrix exponential pt = eΛ
∗tp0.

3.4.3. The Shiryaev-Wonham filter. Consider the filtering problem of a finite
state Markov chain X (with known parameters) to be estimated from the trajectory
of the observation process Y , given by

Yt =

∫ t

0

g(Xs)ds+BWt, t ∈ [0, T ]

where g is an S 7→ R function, B > 0 is a constant and W is a Wiener process,
independent of X. The sufficient statistics in this problem is the vector22 πt of
conditional probabilities πt(i) = P(Xt = ai|FY

t ), i = 1, ..., d, since

E
(
f(Xt)|FY

t

)
= E

( d∑
i=1

f(ai)1{Xt=ai}
∣∣FY

t

)
=

d∑
i=1

f(ai)πt(i).

The following theorem gives the complete solution to the filtering problem

Theorem 6.31. (Shiryaev [35], Wonham [40]) The vector πt satisfies the Itô
SDE

dπt = Λ∗πtdt+
(
diag(πt)− πtπ

∗
t

)
g
(
dYt − g∗πtdt

)
/B2, π0 = p0, (6.56)

where g stands for d-dimensional vector with entries g(ai), i = 1, ..., d. Moreover23

πt = ρt/|ρt|, where

dρt = Λ∗ρtdt+ diag(g)ρtdYt/B
2, ρ0 = p0. (6.57)

Proof. The equation 6.56 follows from the FKK equation (6.6), applied to
the process It, introduced in (6.52). In particular the i-th component of It satisfies

It(i) = I0(i) +

∫ t

0

d∑
j=1

λjiIs(j)ds+

∫ t

0

d∑
j=1

Is−(j)
(
dNs(ji)− λjids

)
:=

I0(i) +

∫ t

0

d∑
j=1

λjiIs(j)ds+Mt(i),

where M(i) is a square integrable martingale. Then (6.6) implies

πt(i) =π0(i) +

∫ t

0

λjiπs(j)ds+(
E(Is(i)g

∗Is|FY
s )− πs(i)E(g

∗Is|FY
s )
)(
dYs − E(g∗Is|FY

s )ds
)
/B2 =

π0(i) +

∫ t

0

λjiπs(j)ds+
(
giπs(i)− πs(i)π

∗
sg
)(
dYs − g∗πsds

)
/B2

which is nothing but (6.56) in the componentwise notation. Similarly (6.57) follows
from (6.22). �

22a slight abuse of notation is allowed here - recall that πt(·) stands for the conditional

expectation operator in the FKK equation (6.6)
23|x| denotes the ℓ2 norm: |x| =

∑
i |xi|.
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Example 6.32. The two dimensional version of (6.56) was derived in [35] and
shown to play an important role in the problems of quickest change detection. Let
X be a symmetric Markov chain with the switching intensity λ > 0 and with values
in {0, 1} (often referred as telegraphic signal) and set πt = P(Xt = 1|FY

t ). Suppose
that the observations

Yt =

∫ t

0

Xsds+Wt

are available. Then

dπt = λ(1− 2πt)dt+ πt(1− πt)
(
dYt − πtdt

)
, π0 = P(X0 = 1).

�
3.4.4. Filtering number of transitions and occupation times. Clearly the key to

the existence of finite dimensional filter for finite state Markov chains is the fact
that powers of the indicators process It reduce to a linear function of It! This can
be exploited further to get finite dimensional filters for various functionals of X:
the occupation time of the state ai

Ot(i) =

∫ t

0

1{Xs=ai}ds =

∫ t

0

Is(i)ds, (6.58)

the number of transitions from ai to aj

Tt(i, j) =

∫ t

0

1{Xs−=ai}d1{Xs=aj} =

∫ t

0

Is−(i)dIs(j) (6.59)

and the stochastic integrals like

J =

∫ t

0

IsdYs. (6.60)

Being of interest on their own, the filtering formulae for these quantities can be used
to estimate the intensities matrix Λ and other parameters in the problem by means
of so called EM (Expectation/Minimization) algorithm.24 We derive the filter for
Ot (omitting the index i, since the derivation is the same for all i’s), leaving the rest
as exercises. These problems seem to be initially addressed in [42], the derivation
below is taken from [8].

Theorem 6.33. The filtering estimate Ōt = E
(
Ot|FY

t

)
= |Z̄t|, with Z̄t being

the solution of

dZ̄t = Λ∗Z̄tdt+eie
∗
i πtdt+

(
diag(Z̄t)−Z̄tπ

∗
t

)
g
(
dYt−g∗πtdt

)
/B2, Z̄0 = 0. (6.61)

Proof. The trick is to introduce an auxiliary process Zt = OtIt with values
in Rd. Once the conditional expectation Z̄t = E(Zt|FY

t ) is found, the estimate of
Ot is recovered by

Ōt = E
(
Ot

d∑
i=1

It(i)|FY
t

)
=

d∑
i=1

E
(
OtIt(i)|FY

t

)
=

d∑
i=1

Z̄t(i) =
∣∣Z̄t

∣∣
By the Itô formula25

dZt = d(OtIt) = OtdIt + ItdOt = OtdN
∗
t It− + ItIt(i)dt = dN∗

t Zt− + eie
∗
i Itdt

24an iterative procedure for finding maximum of certain likelihood functionals.
25in this case it is simply integration by parts: no continuous time martingales or mutual

jumps are involved: note that Ot has absolutely continuous trajectories
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and hence

Zt =

∫ t

0

(
Λ∗Zsds+eie

∗
i Is
)
ds+

∫ t

0

(dN∗
s −Λ∗ds)Zs− :=

∫ t

0

(
Λ∗Zsds+eie

∗
i Is
)
ds+M ′

t

whereM ′
t is a square integrable martingale (check it). Apply (6.6) to the component

Zt(ℓ)

Z̄t(ℓ) =

∫ t

0

( d∑
j=1

λjℓZ̄s(ℓ) + δiℓπs(i)
)
ds

+

∫ t

0

(
E(Zs(ℓ)g

∗Is|FY
s )− Z̄s(ℓ)g

∗πs

)
B−2

(
dYs − g∗πsds

)
Since Zs(ℓ)g

∗Is = g∗OsIs(ℓ)Is = g∗eℓZs(ℓ) = gℓZs(ℓ), the equation (6.61) is ob-
tained. �

3.5. Beneŝ filter. Unlike the preceding finite dimensional filters, Beneŝ filter
([2]) is mostly of ”academic” interest: it is an example of a filtering problem for
nonlinear diffusions admitting finite dimensional realization. This filter does not
seem to have an analogue in discrete time.

Theorem 6.34. Consider the two dimensional system of SDEs

dXt = h(Xt)dt+ dWt

dYt = Xt + dVt
(6.62)

subject to Y0 = 0 and X0 = 0, where W and V are independent Wiener processes.
Assume that h(x) satisfies the ODE

h′ + h = ax2 + bx+ c, a ≥ 0, b, c ∈ R

and is such that (6.62) has a unique strong solution. Then the unnormalized con-
ditional distribution of Xt given FY

t has density

ρt(x) = exp

{
H(x) + xYt +

1

2

√
1 + ax2 − 1

2
(c+ k)t

}
∫
R2

ex2+x3Γ(x;mt, Vt)dx2dx3 (6.63)

where Γ(x;mt, Vt) is three dimensional Gaussian density with the mean mt and
covariance matrix Vt, corresponding to the Gaussian system

dξt = −
√
1 + aξtdt+ dWt, ξ0 = 0

dηt = −YtdWt, η0 = 0

dθt =
(
Yt
√
1 + a− b/2

)
ξtdt, θ0 = 0.

(6.64)

Remark 6.35. For example h(x) = tanh(x) satisfies the Beneŝ nonlinearity
with a = b = 0 and c = 1, and the Kalman-Bucy case h(x) = x corresponds to
b = c = 1, a = 0.

Proof. By the Kallianpur-Stribel formula, for any measurable and bounded
function f

E
(
f(Xt)|FY

t

)
(ω) =

∫
C[0,T ]

f(xt)ψt

(
x, Y (ω)

)
µX(dx)∫

C[0,T ]
ψt

(
x, Y (ω)

)
µX(dx)

,
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with

ψt(x, Y ) = exp

{∫ t

0

xsdYs −
1

2

∫ t

0

x2sds

}
, µX − a.s.

and where µX denotes the probability measure induced by X.
The integration with respect to µX can be replaced with integration by the

Wiener measure µW : indeed by the Girsanov theorem µX ∼ µW (checking that
h(Xt) satisfies e.g. the Novikov condition (4.20)) and

dµX

dµW
(x) = exp

{∫ t

0

h(xs)dxs −
1

2

∫ t

0

h2(xs)ds

}
, µX − a.s.

Hence∫
C[0,T ]

f(xt)ψt

(
x, Y (ω)

)
µX(dx) =

∫
C[0,T ]

f(xt)ψt

(
x, Y (ω)

) dµX

dµW
(x)µW (dx) =∫

C[0,T ]

f(xt) exp

{∫ t

0

xsdYs −
1

2

∫ t

0

x2sds+

∫ t

0

h(xs)dxs−

1

2

∫ t

0

h2(xs)ds

}
µW (dx)

Let H(x) :=
∫ x

0
h(u)du, then by the Itô formula

H(Wt) =

∫ t

0

h(Ws)dWs +
1

2

∫ t

0

h′(Ws)ds

and since h′ + h2 = ax2 + bx+ c, we have∫
C[0,T ]

f(xt)ψt

(
x, Y (ω)

)
µX(dx) =∫

C[0,T ]

f(xt) exp

{∫ t

0

xsdYs −
1

2

∫ t

0

x2sds+

H(xt)−
1

2

∫ t

0

h′(xs)ds−
1

2

∫ t

0

h2(xs)ds

}
µW (dx) =∫

C[0,T ]

f(xt)e
H(xt) exp

{∫ t

0

xsdYs −
1

2
(1 + a)

∫ t

0

x2sds−

1

2

∫ t

0

(
bxs + c

)
ds

}
µW (dx)

Now we apply the Girsanov theorem once again: introduce the Ornstein-Uhlnebeck
process

dξt = −
√
1 + aξtdt+ dWt, ξ0 = 0

The induced measure µξ is equivalent to µW and

dµξ

dµW
(x) = exp

{
−
∫ t

0

√
1 + axsdxs −

1

2

∫ t

0

(1 + a)x2sds

}
, µξ − a.s.
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Hence∫
C[0,T ]

f(xt)ψt

(
x, Y (ω)

)
µX(dx) =∫

C[0,T ]

f(xt)e
H(xt) exp

{∫ t

0

xsdYs −
1

2
(1 + a)

∫ t

0

x2sds−

1

2

∫ t

0

(
bxs + c

)
ds

}
dµW

dµξ
(x)µξ(dx) =∫

C[0,T ]

f(xt)e
H(xt) exp

{∫ t

0

xsdYs −
1

2

∫ t

0

(
bxs + c

)
ds+

√
1 + a

∫ t

0

xsdxs

}
µξ(dx) =∫

C[0,T ]

f(xt)e
H(xt) exp

{
xtYt −

∫ t

0

Ysdxs −
1

2

∫ t

0

(
bxs + c

)
ds

+
√
1 + a

1

2
(x2t − t)

}
µξ(dx),

where the latter equality is obtained by the Itô formula (applicable under µξ).
Let (ξ, η, θ) be the solution of the linear system (6.64), then∫
C[0,T ]

f(xt)ψt

(
x, Y (ω)

)
µX(dx) =

∫
R3

f(x1)·

exp

{
H(x1) + x1Yt +

1

2

√
1 + ax21 −

1

2
(c+ k)t+ x2 + x3

}
Γ(x;mt, Vt)dx,

and (6.63) follows by arbitrariness of f . �

Exercises

(1) Let the signal process Xt = 1{τ≤t}, where τ is a nonnegative random
variable with probability distribution G(dx). Suppose that the trajectory
of

Yt =

∫ t

0

Xsds+Wt

is observed, where W is a Wiener process, independent of τ .
(a) Is Xt a Markov process for general G? Give a counterexample if your

answer is negative. Give an example for which Xt is Markov.
(b) Apply the Kallianpur-Striebel formula to obtain a formula for P(τ ≤

t|FY
t ).

(2) Show that

σt(1) = exp

(∫ t

0

πs(g)dYs −
1

2

∫ t

0

(
πs(g)

)2
ds

)
.

(3) (a) Verify the claim of Remark 6.22 directly
(b) Find the solution of the Zakai equation (6.28) in the linear Gaussian

case
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(4) Consider the linear diffusion

dXt = aXt + dWt, X0 = 0,

where W is a Wiener process and a is an unknown random parameter, to
be estimated from FX

t . Below a and W are assumed independent.
(a) Assume that a takes a finite number of values {α1, ..., αd} with pos-

itive probabilities {p1, ..., pd}. Find the recursive formulae (d dimen-
sional system of SDEs) for πt(i) = P(a = αi|FX

t ).
(b) Find the explicit solutions to the SDEs in (a).
(c) Does πt(i) converges to 1{a=αi}, i = 1, ..., d ? If yes, in what sense ?

(d) Assume that Ea2 <∞ and find an explicit expression for the orthog-

onal projection Ê(a|LX
t ) and the corresponding mean square error.

(e) Assume that a is a standard Gaussian random variable. Is the process
X Gaussian ? Is the pair (a,X) Gaussian ? Is X conditionally
Gaussian, given a ?

(f) Is the optimal nonlinear filter in this case finite dimensional ? If yes,
find the recursive equations for the sufficient statistics.

(g) Does the mean square error Pt = E
(
a−E(a|FX

t )
)2

converges to zero
as t→ ∞?

(5) Verify that FY
t ⊆ FW̄

t for the linear Gaussian setting (6.32)
(6) Derive the robust version of the Wonham filter (see (6.31) for reference).

Elaborate the telegraphic (two dimensional) signal case.
(7) Calculate the mean, covariance and one dimensional characteristic func-

tion for the Poisson process.
(8) Verify the last equality (or equivalently the martingale property of the

stochastic integral in this specific case) in (6.54).
(9) Let Xt be a finite state Markov chain with values in S = {a1, ..., ad},

transition intensities matrix Λ and initial distribution p0. Let It be the
d-dimensional vector of indicators 1{Xt=ai}.

(a) Show that the vector process Mt = It − I0 −
∫ t

0
Λ∗Isds is a FX

t -
martingale.

(b) Find its variance EMtM
∗
t

(10) For the process It, defined in the previous exercise, derive the filtering

equations for the optimal linear estimate Ît = Ê(It|LY
t ) and the corre-

sponding error covariance, where Yt =
∫ t

0
h(Xs)ds+Wt.

Hint: use the results of Section 3 from the previous chapter
(11) Consider a finite automaton with d states. A timer is associated with

each state, which is reset upon entering and initiates state transition after
a random period of time elapses. The next state is chosen at random,
independently of all the timers with probabilities depending on the current
state. LetXt be the state of the automaton at time t. Calibrate this model
(i.e. choose the timers parameters and transition probabilities, so that Xt

is a Markov chain with given intensities matrix Λ).
(12) (a) Derive finite dimensional filtering equations for Tt(i, j) in (6.59) and

J in (6.60)
(b) Derive the Zakai type equations for Ot(i), Tt(i, j) and J
(c) Elaborate the structure of the optimal filters for telegraphic signal

case.
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Auxiliary facts

1. The main convergence theorems

Theorem A.1. (Monotone convergence) Let Y,X,X1, ... be random variables,
then

(a) If Xj ≥ Y for each j ≥ 1, EY > −∞ and Xj ↗ X, then

EXj ↗ EX.

(b) If Xj ≤ Y for each j ≥ 1, EY <∞ and Xj ↘ X, then

EXj ↘ EX.

Corollary A.2. Let Xj be a sequence of nonnegative random variables, then

E
∞∑
j=1

Xj =
∞∑
j=1

EXj

Theorem A.3. (Fatou Lemma) Let Y,X1, X2, ... be random variables, then

(a) If Xj ≥ Y for all j ≥ 1 and EY > −∞, then

E lim
j→∞

Xj ≤ lim
j→∞

EXj .

(b) If Xj ≤ Y for all j ≥ 1 and EY <∞, then

lim
j→∞

EXj ≤ E lim
j→∞

Xj .

(c) If |Xj | ≤ Y for all j ≥ 1 and EY <∞, then

E lim
j→∞

Xj ≤ lim
j→∞

EXj ≤ lim
j→∞

EXj ≤ E lim
j→∞

Xj

Theorem A.4. (Lebesgue dominated convergence) Let Y,X1, X2, ... be random

variables, such that |Xj | ≤ Y , EY <∞ and Xj
P−a.s.−−−−→
j→∞

X. Then E|X| <∞ and

lim
j→∞

EXj = EX

and

lim
j→∞

E|Xj −X| = 0.

2. Changing the order of integration

Consider the (product) measure space (Ω,F, µ) with Ω = Ω1×Ω2, F = F1×F2,
i.e. F is the σ-algebra of sets A1 ×A2, A1 ∈ F1 and A2 ∈ F2, and µ = µ1 × µ2, i.e.

µ1 × µ2(A1 ×A2) = µ1(A1)µ2(A2), A1 ∈ F1, A2 ∈ F2.
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Theorem A.5. (Fubini theorem) Let X(ω1, ω2) be F1×F2-measurable function,
integrable with respect to measure µ1 × µ2, i.e.∫

Ω1×Ω2

|X(ω1, ω2)|d(µ1 × µ2) <∞.

Then the integrals
∫
Ω1
X(ω1, ω2)µ(dω1) and

∫
Ω2
X(ω1, ω2)µ(dω2) are well defined

for all ω1 and ω2 and are measurable functions with respect to F2 and F1 respec-
tively:

µ2

{
ω2 :

∫
Ω1

|X(ω1, ω2)|µ1(dω1) = ∞
}

= 0

µ1

{
ω1 :

∫
Ω2

|X(ω1, ω2)|µ2(dω2) = ∞
}

= 0.

Moreover∫
Ω1×Ω2

X(ω1, ω2)d(µ1 × µ2) =

∫
Ω1

[∫
Ω2

X(ω1, ω2)µ2(dω2)

]
µ1(dω1) =∫

Ω2

[∫
Ω1

X(ω2, ω1)µ1(dω1)

]
µ2(dω2).
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